
RFC 9682
Updates to the Concise Data Definition Language
(CDDL) Grammar of RFC 8610

Abstract
The Concise Data Definition Language (CDDL), as defined in RFCs 8610 and 9165, provides an
easy and unambiguous way to express structures for protocol messages and data formats that
are represented in Concise Binary Object Representation (CBOR) or JSON.

This document updates RFC 8610 by addressing related errata reports and making other small
fixes for the ABNF grammar defined for CDDL.

Stream:
RFC:
Updates:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9682
8610
Standards Track
October 2024
2070-1721
C. Bormann
Universität Bremen TZI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9682

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9682
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/info/rfc9682
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Conventions and Definitions

2. Clarifications and Changes Based on Errata Reports

2.1. Updates to String Literal Grammar

2.1.1. Erratum ID 6527 (Text String Literals)

2.1.2. Erratum ID 6278 (Consistent String Literals)

2.1.3. Addressing Erratum ID 6526 and Erratum ID 6543

2.2. Examples Demonstrating the Updated String Syntaxes

3. Small Enabling Grammar Changes

3.1. Empty Data Models

3.2. Non-literal Tag Numbers, Simple Values

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Updated Collected ABNF for CDDL

Appendix B. Details about Covering Erratum ID 6543

B.1. Change Proposed by Erratum ID 6543

B.2. No Further Change Needed after Updating String Literal Grammar

Acknowledgments

Author's Address

3

3

3

3

3

5

5

5

6

6

7

8

9

9

9

9

10

13

13

14

14

15

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 2

1. Introduction
The Concise Data Definition Language (CDDL), as defined in and , provides
an easy and unambiguous way to express structures for protocol messages and data formats that
are represented in CBOR or JSON.

This document updates by addressing errata and making other small fixes for the
ABNF grammar defined for CDDL. The body of this document explains and shows motivation for
the updates; the updated collected ABNF syntax in Figure 11 in Appendix A replaces the collected
ABNF syntax in .

[RFC8610] [RFC9165]

[RFC8610]

Appendix B of [RFC8610]

1.1. Conventions and Definitions
The terminology from applies. The grammar in is based on ABNF, which is
defined in and .

[RFC8610] [RFC8610]
[STD68] [RFC7405]

2. Clarifications and Changes Based on Errata Reports
A number of errata reports have been made around some details of text string and byte string
literal syntax: and . These are being addressed in this section, updating
details of the ABNF for these literal syntaxes. Also, the changes described in need to be
applied (backslashes have been lost during RFC processing in some text explaining backslash
escaping).

These changes are intended to mirror the way existing implementations have dealt with the
errata. This document also uses the opportunity presented for the necessary cleanup of the
grammar of string literals for a backward-compatible addition to the syntax for hexadecimal
escapes. The latter change is not automatically forward compatible (i.e., CDDL specifications that
make use of this syntax do not necessarily work with existing implementations until these are
updated, which is recommended in this specification).

[Err6527] [Err6543]
[Err6526]

2.1. Updates to String Literal Grammar

2.1.1. Erratum ID 6527 (Text String Literals)

The ABNF used in for the content of text string literals is rather permissive:[RFC8610]

Figure 1: ABNF from RFC 8610 for Strings with Permissive ABNF for SESC, but Not Allowing Hex
Escapes

; ABNF from RFC 8610:
text = %x22 *SCHAR %x22
SCHAR = %x20-21 / %x23-5B / %x5D-7E / %x80-10FFFD / SESC
SESC = "\" (%x20-7E / %x80-10FFFD)

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8610#appendix-B

This allows almost any non-C0 character to be escaped by a backslash, but critically misses out
on the \uXXXX and \uHHHH\uLLLL forms that JSON allows to specify characters in hex (which
should be applied here according to Bullet 6 of). (Note that CDDL imports
from JSON the unwieldy \uHHHH\uLLLL syntax, which represents Unicode code points beyond
U+FFFF by making them look like UTF-16 surrogate pairs; CDDL text strings do not use UTF-16 or
surrogates.)

Both can be solved by updating the SESC rule. This document uses the opportunity to add a
popular form of directly specifying characters in strings using hexadecimal escape sequences of
the form \u{hex}, where hex is the hexadecimal representation of the Unicode scalar value. The
result is the new set of rules defining SESC in Figure 2.

(Notes: In ABNF, strings such as "A", "B", etc., are case insensitive, as is intended here. The rules
above could have also used %s"b", etc., instead of %x62, but didn't, in order to maximize
compatibility of ABNF tools.)

Now that SESC is more restrictively formulated, an update to the BCHAR rule used in the ABNF
syntax for byte string literals is also required:

With the SESC updated as above, \' is no longer allowed in BCHAR; this now needs to be
explicitly included; see below.

Section 3.1 of [RFC8610]

Figure 2: Update to String ABNF in Appendix B of : Allow Hex Escapes

; new rules collectively defining SESC:
SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\
 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t
 (%x75 hexchar)) ; \uXXXX
hexchar = "{" (1*"0" [hexscalar] / hexscalar) "}" /
 non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
 ("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG
hexscalar = "10" 4HEXDIG / HEXDIG1 4HEXDIG
 / non-surrogate / 1*3HEXDIG
HEXDIG1 = DIGIT1 / "A" / "B" / "C" / "D" / "E" / "F"

[RFC8610]

Figure 3: ABNF from RFC 8610 for BCHAR

; ABNF from RFC 8610:
bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
bsqual = "h" / "b64"

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8610#section-3.1

2.1.2. Erratum ID 6278 (Consistent String Literals)

Updating BCHAR also provides an opportunity to address , which points to an
inconsistency in treating U+007F (DEL) between SCHAR and BCHAR. As U+007F is not printable,
including it in a byte string literal is as confusing as for a text string literal; therefore, it should be
excluded from BCHAR as it is from SCHAR. The same reasoning also applies to the C1 control
characters, so the updated ABNF actually excludes the entire range from U+007F to U+009F. The
same reasoning also applies to text in comments (PCHAR). For completeness, all these should also
explicitly exclude the code points that have been set aside for UTF-16 surrogates.

(Note that, apart from addressing the inconsistencies, there is no attempt to further exclude non-
printable characters from the ABNF; doing this properly would draw in complexity from the
ongoing evolution of the Unicode standard that is not needed here.)

[Err6278]

Figure 4: Update to ABNF in Appendix B of : BCHAR, SCHAR, and PCHAR

; new rules for SCHAR, BCHAR, and PCHAR:
SCHAR = %x20-21 / %x23-5B / %x5D-7E / NONASCII / SESC
BCHAR = %x20-26 / %x28-5B / %x5D-7E / NONASCII / SESC / "\'" / CRLF
PCHAR = %x20-7E / NONASCII
NONASCII = %xA0-D7FF / %xE000-10FFFD

[RFC8610]

2.1.3. Addressing Erratum ID 6526 and Erratum ID 6543

The above changes also cover (a proposal to split off qualified byte string literals from
UTF-8 byte string literals) and (lost backslashes); see Appendix B for details.

[Err6543]
[Err6526]

2.2. Examples Demonstrating the Updated String Syntaxes
The CDDL example in Figure 5 demonstrates various escaping techniques now available for (byte
and text) strings in CDDL. Obviously, in the literals for a and x, there is no need to escape the
second character, an o, as \u{6f}; this is just for demonstration. Similarly, as shown in c and z,
there also is no need to escape the "🁳" (DOMINO TILE VERTICAL-02-02, U+1F073) or "⌘" (PLACE
OF INTEREST SIGN, U+2318); however, escaping them may be convenient in order to limit the
character repertoire of a CDDL file itself to ASCII .[STD80]

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 5

In this example, the rules a to c and x to z all produce strings with byte-wise identical content: a
to c are text strings and x to z are byte strings. Figure 6 illustrates this by showing the output
generated from the start rule in Figure 5, using pretty-printed hexadecimal.

Figure 5: Example Text and Byte String Literals with Various Escaping Techniques

start = [a, b, c, x, y, z]

; "🁳", DOMINO TILE VERTICAL-02-02, and
; "⌘", PLACE OF INTEREST SIGN, in a text string:
a = "D\u{6f}mino's \u{1F073} + \u{2318}" ; \u{}-escape 3 chars
b = "Domino's \uD83C\uDC73 + \u2318" ; escape JSON-like
c = "Domino's 🁳 + ⌘" ; unescaped

; in a byte string given as text, the ' needs to be escaped:
x = 'D\u{6f}mino\u{27}s \u{1F073} + \u{2318}' ; \u{}-escape 4 chars
y = 'Domino\'s \uD83C\uDC73 + \u2318' ; escape JSON-like
z = 'Domino\'s 🁳 + ⌘' ; escape ' only

Figure 6: Generated CBOR from CDDL Example (Pretty-Printed Hexadecimal)

86 # array(6)
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"

3. Small Enabling Grammar Changes
Each subsection that follows specifies a small change to the grammar that is intended to enable
certain kinds of specifications. These changes are backward compatible (i.e., CDDL files that
comply with continue to match the updated grammar) but not necessarily forward
compatible (i.e., CDDL specifications that make use of these changes cannot necessarily be
processed by existing implementations of).

[RFC8610]

[RFC8610]

3.1. Empty Data Models
 requires a CDDL file to have at least one rule.[RFC8610]

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 6

This makes sense when the file has to stand alone, as a CDDL data model needs to have at least
one rule to provide an entry point (i.e., a start rule).

With CDDL modules , CDDL files can also include directives, and these might
be the source of all the rules that ultimately make up the module created by the file. Any other
rule content in the file has to be available for directive processing, making the requirement for at
least one rule cumbersome.

Therefore, the present update extends the grammar as in Figure 8 and turns the existence of at
least one rule into a semantic constraint, to be fulfilled after processing of all directives.

Figure 7: ABNF from RFC 8610 for Top-Level Rule cddl

; ABNF from RFC 8610:
cddl = S 1*(rule S)

[CDDL-MODULES]

Figure 8: Update to Top-Level ABNF in Appendices B and C of RFC 8610

; new top-level rule:
cddl = S *(rule S)

3.2. Non-literal Tag Numbers, Simple Values
The existing ABNF syntax for expressing tags in CDDL is as follows:

This means tag numbers can only be given as literal numbers (uints). Some specifications operate
on ranges of tag numbers; for example, has a range of tag numbers 1668546817
(0x63740101) to 1668612095 (0x6374FFFF) to tag specific content formats. This can currently not
be expressed in CDDL. Similar considerations apply to simple values (#7.xx).

This update extends the syntax to the following:

Figure 9: Original ABNF from RFC 8610 for Tag Syntax

; extracted from the ABNF in RFC 8610:
type2 =/ "#" "6" ["." uint] "(" S type S ")"

[RFC9277]

Figure 10: Update to Tag and Simple Value ABNF in Appendices B and C of RFC 8610

; new rules collectively defining the tagged case:
type2 =/ "#" "6" ["." head-number] "(" S type S ")"
 / "#" "7" ["." head-number]
head-number = uint / ("<" type ">")

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 7

For #6, the head-number stands for the tag number. For #7, the head-number stands for the
simple value if it is in the ranges 0..23 or 32..255 (as per Section 3.3 of RFC 8949 , the
simple values 24..31 are not used). For 24..31, the head-number stands for the "additional
information", e.g., #7.25 or #7.<25> is a float16, etc. (All ranges mentioned here are inclusive.)

So the above range can be expressed in a CDDL fragment such as:

Notes:

This syntax reuses the angle bracket syntax for generics; this reuse is innocuous as a generic
parameter/argument only ever occurs after a rule name (id), while it occurs after . here.
(Whether there is potential for human confusion can be debated; the above example
deliberately uses generics as well.)
The updated ABNF grammar makes it a bit more explicit that the number given after the
optional dot is special, not giving the CBOR "additional information" for tags and simple
values as it is with other uses of # in CDDL. (Adding this observation to

 is the subject of ; it is correctly noted in .) In
hindsight, maybe a different character than the dot should have been chosen for this special
case; however, changing the grammar in the current document would have been too
disruptive.

[STD94]

ct-tag<content> = #6.<ct-tag-number>(content)
ct-tag-number = 1668546817..1668612095
; or use 0x63740101..0x6374FFFF

1.

2.

Section 2.2.3 of
[RFC8610] [Err6575] Section 3.6 of [RFC8610]

4. Security Considerations
The grammar fixes and updates in this document are not believed to create additional security
considerations. The security considerations in apply. Specifically, the
potential for confusion is increased in an environment that uses a combination of CDDL tools,
some of which have been updated and some of which have not, in particular based on Section 2.

Attackers may want to exploit such potential confusion by crafting CDDL models that are
interpreted differently by different parts of a system. There will be a period of transition from
the details that the grammar in handled in a less-well-defined way, to the updated
grammar defined in the present document. This transition might offer one, but not the only kind
of opportunity for the kind of attack that relies on differences between implementations.
Implementations that make use of CDDL models operationally already need to ascertain the
provenance (and thus authenticity and integrity) and applicability of models they employ. At the
time of writing, it is expected that the models will generally be processed by a software
developer, within a software-development environment. Therefore, developers are advised to
treat CDDL models with the same care as any other source code.

Section 5 of [RFC8610]

[RFC8610]

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8949#section-3.3
https://www.rfc-editor.org/rfc/rfc8610#section-2.2.3
https://www.rfc-editor.org/rfc/rfc8610#section-3.6
https://www.rfc-editor.org/rfc/rfc8610#section-5

6. References

5. IANA Considerations
This document has no IANA actions.

[RFC8610]

[STD68]

[STD94]

6.1. Normative References

, , and ,

, ,
, June 2019, .

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Internet Standard 68, .<https://www.rfc-editor.org/info/std68>
At the time of writing, this STD comprises the following:

 and ,
, , , , January 2008,

.

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Internet Standard 94, .<https://www.rfc-editor.org/info/std94>
At the time of writing, this STD comprises the following:

 and , ,
, , , December 2020,

.

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

[CDDL-MODULES]

[EDN-LITERALS]

[Err6278]

[Err6526]

[Err6527]

6.2. Informative References

 and , , ,
, 1 September 2024,

.

, , ,
, 1 September 2024,

.

, , ,
.

, , ,
.

, , ,
.

Bormann, C. B. Moran "CDDL Module Structure" Work in Progress
Internet-Draft, draft-ietf-cbor-cddl-modules-03 <https://
datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-modules-03>

Bormann, C. "CBOR Extended Diagnostic Notation (EDN)" Work in Progress
Internet-Draft, draft-ietf-cbor-edn-literals-12 <https://
datatracker.ietf.org/doc/html/draft-ietf-cbor-edn-literals-12>

RFC Errata Erratum ID 6278 RFC 8610 <https://www.rfc-editor.org/errata/
eid6278>

RFC Errata Erratum ID 6526 RFC 8610 <https://www.rfc-editor.org/errata/
eid6526>

RFC Errata Erratum ID 6527 RFC 8610 <https://www.rfc-editor.org/errata/
eid6527>

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 9

https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/std68
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-modules-03
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-modules-03
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-edn-literals-12
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-edn-literals-12
https://www.rfc-editor.org/errata/eid6278
https://www.rfc-editor.org/errata/eid6278
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6527
https://www.rfc-editor.org/errata/eid6527

[Err6543]

[Err6575]

[RFC7405]

[RFC9165]

[RFC9277]

[STD80]

, , ,
.

, , ,
.

, , ,
, December 2014, .

,
, , , December 2021,

.

 and ,
, , , August 2022,

.

RFC Errata Erratum ID 6543 RFC 8610 <https://www.rfc-editor.org/errata/
eid6543>

RFC Errata Erratum ID 6575 RFC 8610 <https://www.rfc-editor.org/errata/
eid6575>

Kyzivat, P. "Case-Sensitive String Support in ABNF" RFC 7405 DOI 10.17487/
RFC7405 <https://www.rfc-editor.org/info/rfc7405>

Bormann, C. "Additional Control Operators for the Concise Data Definition
Language (CDDL)" RFC 9165 DOI 10.17487/RFC9165 <https://
www.rfc-editor.org/info/rfc9165>

Richardson, M. C. Bormann "On Stable Storage for Items in Concise Binary
Object Representation (CBOR)" RFC 9277 DOI 10.17487/RFC9277
<https://www.rfc-editor.org/info/rfc9277>

Internet Standard 80, .<https://www.rfc-editor.org/info/std80>
At the time of writing, this STD comprises the following:

, , , ,
, October 1969, .

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Appendix A. Updated Collected ABNF for CDDL
This appendix is normative.

It provides the full ABNF from as updated by the present document.[RFC8610]

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 10

https://www.rfc-editor.org/errata/eid6543
https://www.rfc-editor.org/errata/eid6543
https://www.rfc-editor.org/errata/eid6575
https://www.rfc-editor.org/errata/eid6575
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9277
https://www.rfc-editor.org/info/std80
https://www.rfc-editor.org/info/rfc20

cddl = S *(rule S)
rule = typename [genericparm] S assignt S type
 / groupname [genericparm] S assigng S grpent

typename = id
groupname = id

assignt = "=" / "/="
assigng = "=" / "//="

genericparm = "<" S id S *("," S id S) ">"
genericarg = "<" S type1 S *("," S type1 S) ">"

type = type1 *(S "/" S type1)

type1 = type2 [S (rangeop / ctlop) S type2]
; space may be needed before the operator if type2 ends in a name

type2 = value
 / typename [genericarg]
 / "(" S type S ")"
 / "{" S group S "}"
 / "[" S group S "]"
 / "~" S typename [genericarg]
 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]
 / "#" "6" ["." head-number] "(" S type S ")"
 / "#" "7" ["." head-number]
 / "#" DIGIT ["." uint] ; major/ai
 / "#" ; any
head-number = uint / ("<" type ">")

rangeop = "..." / ".."

ctlop = "." id

group = grpchoice *(S "//" S grpchoice)

grpchoice = *(grpent optcom)

grpent = [occur S] [memberkey S] type
 / [occur S] groupname [genericarg] ; preempted by above
 / [occur S] "(" S group S ")"

memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

bareword = id

optcom = S ["," S]

occur = [uint] "*" [uint]
 / "+"
 / "?"

uint = DIGIT1 *DIGIT

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 11

Figure 11: ABNF for CDDL as Updated

 / "0x" 1*HEXDIG
 / "0b" 1*BINDIG
 / "0"

value = number
 / text
 / bytes

int = ["-"] uint

; This is a float if it has fraction or exponent; int otherwise
number = hexfloat / (int ["." fraction] ["e" exponent])
hexfloat = ["-"] "0x" 1*HEXDIG ["." 1*HEXDIG] "p" exponent
fraction = 1*DIGIT
exponent = ["+"/"-"] 1*DIGIT

text = %x22 *SCHAR %x22
SCHAR = %x20-21 / %x23-5B / %x5D-7E / NONASCII / SESC

SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\
 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t
 (%x75 hexchar)) ; \uXXXX

hexchar = "{" (1*"0" [hexscalar] / hexscalar) "}" /
 non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
 ("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG
hexscalar = "10" 4HEXDIG / HEXDIG1 4HEXDIG
 / non-surrogate / 1*3HEXDIG

bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-7E / NONASCII / SESC / "\'" / CRLF
bsqual = "h" / "b64"

id = EALPHA *(*("-" / ".") (EALPHA / DIGIT))
ALPHA = %x41-5A / %x61-7A
EALPHA = ALPHA / "@" / "_" / "$"
DIGIT = %x30-39
DIGIT1 = %x31-39
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HEXDIG1 = DIGIT1 / "A" / "B" / "C" / "D" / "E" / "F"
BINDIG = %x30-31

S = *WS
WS = SP / NL
SP = %x20
NL = COMMENT / CRLF
COMMENT = ";" *PCHAR CRLF
PCHAR = %x20-7E / NONASCII
NONASCII = %xA0-D7FF / %xE000-10FFFD
CRLF = %x0A / %x0D.0A

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 12

Appendix B. Details about Covering Erratum ID 6543
This appendix is informative.

 notes that the ABNF used in for the content of byte string literals lumps
together byte strings notated as text with byte strings notated in base16 (hex) or base64 (but see
also updated BCHAR rule in Figure 4):

[Err6543] [RFC8610]

Figure 12: Original ABNF from RFC 8610 for BCHAR

; ABNF from RFC 8610:
bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

B.1. Change Proposed by Erratum ID 6543
Erratum ID 6543 proposes handling the two cases in separate ABNF rules (where, with an
updated SESC, BCHAR obviously needs to be updated as above):

This potentially causes a subtle change, which is hidden in the WS rule:

This allows any non-C0 character in a comment, so this fragment becomes possible:

Figure 13: Proposal from Erratum ID 6543 to Split the Byte String Rules

; Proposal from Erratum ID 6543:
bytes = %x27 *BCHAR %x27
 / bsqual %x27 *QCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
QCHAR = DIGIT / ALPHA / "+" / "/" / "-" / "_" / "=" / WS

Figure 14: ABNF Definition of WS from RFC 8610

; ABNF from RFC 8610:
WS = SP / NL
SP = %x20
NL = COMMENT / CRLF
COMMENT = ";" *PCHAR CRLF
PCHAR = %x20-7E / %x80-10FFFD
CRLF = %x0A / %x0D.0A

foo = h'
 43424F52 ; 'CBOR'
 0A ; LF, but don't use CR!
'

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 13

The current text is not unambiguously saying whether the three apostrophes need to be escaped
with a \ or not, as in:

... which would be supported by the existing ABNF in .

foo = h'
 43424F52 ; \'CBOR\'
 0A ; LF, but don\'t use CR!
'

[RFC8610]

B.2. No Further Change Needed after Updating String Literal Grammar
This document takes the simpler approach of leaving the processing of the content of the byte
string literal to a semantic step after processing the syntax of the bytes/BCHAR rules, as updated
by Figures 2 and 4 in Section 2.1 (updates prompted by the combination of and

).

Therefore, the rules in Figure 14 (as updated by Figure 4) are applied to the result of this
processing where bsqual is given as h or b64.

Note that this approach also works well with the use of byte strings in . It
does require some care when copying-and-pasting into CDDL models from ABNF that contain
single quotes (which may also hide as apostrophes in comments); these need to be escaped or
possibly replaced by %x27.

Finally, the approach taken lends support to extending bsqual in CDDL similar to the way this is
done for CBOR diagnostic notation in . (Note that, at the time of writing, the
processing of string literals is quite similar for both CDDL and Extended Diagnostic Notation
(EDN), except that CDDL has end-of-line comments that are ";" based and EDN has two comment
syntaxes: those that are in-line "/" based and those that are end-of-line "#" based.)

[Err6527]
[Err6278]

Section 3 of [RFC9165]

[EDN-LITERALS]

Acknowledgments
Many thanks go to the submitters of the errata reports addressed in this document. In one of the
ensuing discussions, proposed defining an ABNF rule "NONASCII", of which we have
included the essence. Special thanks to the reviewers , (Shepherd
Review and further guidance), (AD Review and further guidance), and
(detailed IESG review).

Doug Ewell
Marco Tiloca Christian Amsüss

Orie Steele Éric Vyncke

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc9165#section-3

Author's Address
Carsten Bormann
Universität Bremen TZI
Postfach 330440
D-28359 Bremen
Germany

+49-421-218-63921Phone:
cabo@tzi.orgEmail:

RFC 9682 CDDL grammar updates October 2024

Bormann Standards Track Page 15

tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 9682
	Updates to the Concise Data Definition Language (CDDL) Grammar of RFC 8610
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Clarifications and Changes Based on Errata Reports
	2.1. Updates to String Literal Grammar
	2.1.1. Erratum ID 6527 (Text String Literals)
	2.1.2. Erratum ID 6278 (Consistent String Literals)
	2.1.3. Addressing Erratum ID 6526 and Erratum ID 6543

	2.2. Examples Demonstrating the Updated String Syntaxes

	3. Small Enabling Grammar Changes
	3.1. Empty Data Models
	3.2. Non-literal Tag Numbers, Simple Values

	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Updated Collected ABNF for CDDL
	Appendix B. Details about Covering Erratum ID 6543
	B.1. Change Proposed by Erratum ID 6543
	B.2. No Further Change Needed after Updating String Literal Grammar

	Acknowledgments
	Author's Address

