Stream: Internet Engineering Task Force (IETF)

RFC: 9911

Obsoletes: 6991

Category: Standards Track
Published: December 2025
ISSN: 2070-1721

Author: J. Schonwalder, Ed.

Constructor University

RFC 9911
Common YANG Data Types

Abstract

This document defines a collection of common data types to be used with the YANG data
modeling language. This version of the document adds several new type definitions and
obsoletes RFC 6991.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9911.

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Schénwaélder Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9911
https://www.rfc-editor.org/rfc/rfc6991
https://www.rfc-editor.org/info/rfc9911
https://trustee.ietf.org/license-info

RFC 9911 Common YANG Data Types December 2025

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents

1. Introduction 2
2. Overview 3
3. Core YANG Types 7
4. Internet Protocol Suite Types 20
5. IANA Considerations 32
6. Security Considerations 32
7. References 33

7.1. Normative References 33

7.2. Informative References 34
Acknowledgments 37
Author's Address 37

1. Introduction

YANG [RFC7950] is a data modeling language used to model configuration and state data
manipulated by the Network Configuration Protocol (NETCONF) [RFC6241]. The YANG language
supports a small set of built-in data types and provides mechanisms to derive other types from
the built-in types.

This document defines a collection of common data types. The definitions are organized into two
YANG modules:

* The "ietf-yang-types" module defines generally useful data types such as types for counters
and gauges, types related to date and time, and types for common string values (e.g., UUIDs,
dotted-quad notation, and language tags).

Schénwaélder Standards Track Page 2

RFC 9911 Common YANG Data Types December 2025

 The "ietf-inet-types" module defines data types relevant for the Internet protocol suite such
as types related to IP address, types for domain name, host name, URI, and email, and types
for values in common protocol fields (e.g., port numbers).

The initial version of these YANG modules was published as [RFC6021]. The first revision of
[RFC6021], published as [RFC6991], added several type definitions to the YANG modules. This
second revision adds further new type definitions and addresses Erratum IDs 4076 [Err4076]
and 5105 [Err5105]. Furthermore, the yang-identifier definition has been aligned with YANG 1.1
[RFC7950], and some pattern statements have been improved. For further details, see the
revision statements of the YANG modules in Sections 3 and 4. A brief overview of all types and
when they were introduced can be found in Section 2. Additional type definitions may be added
in the future by submitting proposals to the NETMOD Working Group.

This document uses the YANG terminology defined in Section 3 of [REC7950].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

2. Overview

Tables 1 and 2 list the types defined in the YANG modules "ietf-yang-types" and "ietf-inet-types".
For each type, the name of the type, the base type it was derived from, and the RFC introducing
the type is listed.

Type Base Type Introduced
counter32 uint32 RFC 6021
zero-based-counter32 uint32 RFC 6021
counter64 uint64 RFC 6021
zero-based-counter64 uint64 RFC 6021
gauge32 uint32 RFC 6021
gauge64 uint64 RFC 6021
object-identifier string RFC 6021

object-identifier-128 object-identifier ~RFC 6021
date-and-time string RFC 6021

date string RFC 9911

Schénwaélder Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc7950#section-3

RFC 9911

Schonwaélder

Common YANG Data Types
Type Base Type
date-no-zone string
time string
time-no-zone string
hours32 int32
minutes32 int32
seconds32 int32
centiseconds32 int32
milliseconds32 int32
microseconds32 int32
microseconds64 int64
nanoseconds32 int32
nanoseconds64 int64
timeticks int32
timestamp timeticks
phys-address string
mac-address string
xpath1.0 string
hex-string string
uuid string
dotted-quad string
language-tag string
yang-identifier string

Standards Track

Introduced

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 9911

RFC 6021

RFC 6021

RFC 6021

RFC 6021

RFC 6021

RFC 6991

RFC 6991

RFC 6991

RFC 9911

RFC 6991

Table 1: Types Defined in the "ietf-yang-types" Module

December 2025

Page 4

RFC 9911

Schonwaélder

Common YANG Data Types
Type Base Type
ip-version enum
dscp uint8
ipv6-flow-label uint32
port-number uint16
protocol-number uint8

upper-layer-protocol-number
as-number

ip-address

ipv4-address
ipv6-address
ip-address-no-zone
ipv4-address-no-zone
ipv6-address-no-zone
ip-address-link-local
ipv4-address-link-local
ipv6-address-link-local
ip-prefix

ipv4-prefix

ipv6-prefix
ip-address-and-prefix
ipv4-address-and-prefix
ipv6-address-and-prefix
domain-name

host-name

protocol-number

uint32
union
string
string
union
ipv4-address
ipv6-address
union
ipv4-address
ipv6-address
union
string
string
union
string
string

string

domain-name

Standards Track

Introduced

RFC 6021

RFC 6021

RFC 6021

RFC 6021

RFC 9911

RFC 9911

RFC 6021

RFC 6021

RFC 6021

RFC 6021

RFC 6991

RFC 6991

RFC 6991

RFC 9911

RFC 9911

RFC 9911

RFC 6021

RFC 6021

RFC 6021

RFC 9911

RFC 9911

RFC 9911

RFC 6021

RFC 9911

December 2025

Page 5

RFC 9911 Common YANG Data Types December 2025
Type Base Type Introduced
host union RFC 6021
uri string RFC 6021
email-address string RFC 9911

Table 2: Types Defined in the "ietf-inet-types" Module

Some types have an equivalent Structure of Management Information Version 2 (SMIv2)
[RFC2578] [RFC2579] data type. A YANG data type is equivalent to an SMIv2 data type if the data
types have the same set of values and the semantics of the values are equivalent.

Table 3 lists the types defined in the "ietf-yang-types" YANG module with their corresponding
SMIv2 types, and Table 4 lists the types defined in the "ietf-inet-types" module with their

corresponding SMIv2 types.

YANG type
counter32
zero-based-counter32
counterc4
zero-based-counter64
gauge32

gauge64
object-identifier-128
centiseconds32
timeticks

timestamp
phys-address
mac-address

language-tag

Equivalent SMIv2 type (module)
Counter32 (SNMPv2-SMI)
ZeroBasedCounter32 (RMON2-MIB)
Counter64 (SNMPv2-SMI)
ZeroBasedCounter64 (HCNUM-TC)
Gauge32 (SNMPv2-SMI)
CounterBasedGauge64 (HCNUM-TC)
OBJECT IDENTIFIER

Timelnterval (SNMPv2-TC)
TimeTicks (SNMPv2-SMI)
TimeStamp (SNMPv2-TC)
PhysAddress (SNMPv2-TC)
MacAddress (SNMPv2-TC)

LangTag (LANGTAG-TC-MIB)

Table 3: Equivalent SMIv2 Types for the "ietf-yang-types" Module

Schonwaélder

Standards Track

Page 6

RFC 9911 Common YANG Data Types December 2025

YANG type Equivalent SMIv2 type (module)
ip-version InetVersion (INET-ADDRESS-MIB)
dscp Dscp (DIFFSERV-DSCP-TC)

ipv6-flow-label IPv6FlowLabel (IPV6-FLOW-LABEL-MIB)
port-number InetPortNumber (INET-ADDRESS-MIB)
as-number InetAutonomousSystemNumber (INET-ADDRESS-MIB)

uri Uri (URI-TC-MIB)
Table 4: Equivalent SMIv2 Types for the "ietf-inet-types"” Module

3. Core YANG Types

The "ietf-yang-types" YANG module references [IEEE-802-2001], [ISO-9834-1], [RFC2578],
[RFC2579], [RFC2856], [RFC3339], [RFC4122], [RFC4502], [RFC5131], [RFC5646], [RFC7950],
[RFC8294], [RFC9557], [XPATH], and [XSD-TYPES].

<CODE BEGINS> file "ietf-yang-types@2025-12-01.yang"

module ietf-yang-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
prefix yang;

organization
"IETF Network Modeling (NETMOD) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>

Editor: Juergen Schoenwaelder
<mailto:jschoenwaelder@constructor.university>";
description
"This module contains a collection of generally useful derived
YANG data types.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
"MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.

Copyright (c) 2025 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions

Schénwaélder Standards Track Page 7

RFC 9911 Common YANG Data Types December 2025

Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9911;
see the RFC itself for full legal notices.";

revision 2025-12-01 {

description
"This revision adds the following new data types:
- yang:date
- yang:date-no-zone
- yang:time

- yang:time-no-zone

- yang:hours32

- yang:minutes32

- yang:seconds32

- yang:centiseconds32

- yang:milliseconds32

- yang:microseconds32

- yang:microseconds64

- yang:nanoseconds32

- yang:nanoseconds64

- yang:language-tag

The yang-identifier definition has been aligned with YANG
1.1, and types representing time support the representation
of leap seconds. The representation of time zone offsets
has been aligned with RFC 9557. Several description and
pattern statements have been improved.";

reference
"RFC 9911: Common YANG Data Types";
}

revision 2013-07-15 {

description
"This revision adds the following new data types:
- yang:yang-identifier
- yang:hex-string
- yang:uuid
- yang:dotted-quad";

reference
"RFC 6991: Common YANG Data Types";

}
revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";
}

/*** collection of counter and gauge types ***/

typedef counter32 {
type uint32;
description
"The counter32 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2432-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.

Schénwaélder Standards Track Page 8

RFC 9911 Common YANG Data Types December 2025

Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the instantiation of
a schema node of type counter32 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.

The counter32 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter32.

In the value set and its semantics, this type is equivalent
to the Counter32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}

typedef zero-based-counter32 {
type counter32;
default "0";
description
"The zero-based-counter32 type represents a counter32
that has the defined 'initial' value zero.

A data tree node using this type will be set to zero (9)

on creation and will thereafter increase monotonically until
it reaches a maximum value of 2432-1 (4294967295 decimal),
when it wraps around and starts increasing again from zero.

Provided that an application discovers a new data tree node
using this type within the minimum time to wrap, it can use
the 'initial' value as a delta. It is important for a
management station to be aware of this minimum time and the
actual time between polls, and to discard data if the actual
time is too long or there is no defined minimum time.

In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter32 textual convention of the SMIv2.";
reference
"RFC 4502: Remote Network Monitoring Management Information
Base Version 2";

}

typedef counter64 {
type uint64;
description
"The counter64 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2%64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.

Counters have no defined 'initial' value, and thus, a

Schénwaélder Standards Track Page 9

RFC 9911

}

Common YANG Data Types December 2025

single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the instantiation of
a schema node of type counter64 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.

The counter64 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter64.

In the value set and its semantics, this type is equivalent
to the Counter64 type of the SMIv2.";

reference

"RFC 2578: Structure of Management Information Version 2
(SMIv2)";

typedef zero-based-counter64 {

}

type counter64;
default "0";
description

"The zero-based-counter64 type represents a counter64 that
has the defined 'initial' value zero.

A data tree node using this type will be set to zero (0)

on creation and will thereafter increase monotonically until
it reaches a maximum value of 2264-1 (18446744073709551615
decimal), when it wraps around and starts increasing again
from zero.

Provided that an application discovers a new data tree node
using this type within the minimum time to wrap, it can use
the 'initial' value as a delta. It is important for a
management station to be aware of this minimum time and the
actual time between polls, and to discard data if the actual
time is too long or there is no defined minimum time.

In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter64 textual convention of the SMIv2.";

reference

"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";

typedef gauge32 {

type uint32;
description

"The gauge32 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2232-1 (4294967295 decimal), and
the minimum value cannot be smaller than @. The value of
a gauge32 has its maximum value whenever the information

Schénwaélder Standards Track Page 10

RFC 9911

being modeled is greater than or
and has its minimum value
being modeled is smaller than or
If the information being modeled

value,

Common YANG Data Types

equal to its
whenever the
equal to its
subsequently

December 2025

maximum
information
minimum value.
decreases

below (increases above) the maximum (minimum)
gauge32 also decreases (increases).

value, the

In the value set and its semantics, this type
to the Gauge32 type of the SMIv2.";

is equivalent

reference

}

"RFC 2578: Structure of Management Information Version 2

(SMIv2)";

typedef gauge64 {
type uint64;
description

"The gauge64 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2764-1 (184467440673709551615), and
the minimum value cannot be smaller than ©. The value of
a gauge64 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge64 also decreases (increases).

In the value set and its semantics, this type is equivalent
to the CounterBasedGauge64 SMIv2 textual convention defined
in RFC 2856";

reference

}

[**%*

"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";

collection of identifier-related types ***/

typedef object-identifier {
type string {

pattern '(([6-1](\.
| ([

}

[1-3]?[6-9])) | (2\. (6] ([1-9][6-9]%))))"

+ "(\.(e -9]1[68-9]%)))*";

description

Schonwaélder

"The object-identifier type represents administratively
assigned names in a registration-hierarchical-name tree.

Values of this type are denoted as a sequence of numerical
non-negative sub-identifier values. Each sub-identifier
value MUST NOT exceed 2732-1 (4294967295). Sub-identifiers
are separated by single dots and without any intermediate
whitespace.

The ASN.1 standard restricts the value space of the first
sub-identifier to @, 1, or 2. Furthermore, the value space
of the second sub-identifier is restricted to the range

Standards Track Page 11

RFC 9911 Common YANG Data Types December 2025

O to 39 if the first sub-identifier is © or 1. Finally,
the ASN.1 standard requires that an object identifier
has always at least two sub-identifiers. The pattern
captures these restrictions.

Although the number of sub-identifiers is not limited,
module designers should realize that there may be
implementations that stick with the SMIv2 limit of 128
sub-identifiers.

This type is a superset of the SMIv2 OBJECT IDENTIFIER type
since it is not restricted to 128 sub-identifiers. Hence,
this type SHOULD NOT be used to represent the SMIv2 OBJECT
IDENTIFIER type; the object-identifier-128 type SHOULD be
used instead.";

reference
"ISO 9834-1: Information technology -- Open Systems
Interconnection -- Procedures for the operation of 0SI

Registration Authorities: General procedures and top
arcs of the International Object Identifier tree";

}

typedef object-identifier-128 {
type object-identifier {
pattern '[@-9]*(\.[0-9]*){1,127}";

description
"This type represents object-identifiers restricted to 128
sub-identifiers.

In the value set and its semantics, this type is equivalent
to the OBJECT IDENTIFIER type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}

/*** collection of types related to date and time **%*/

typedef date-and-time {
type string {
pattern

'[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])"
+ 'T(0[0-9]|1[0-9]|2[0-3]):[8-5]1[8-9]:([0-5][0-9]|60)(\.[0-9]+)?"
+ "(ZI[\+\-]1((1[0-3]10[0-9]):([0-5]1[0-9])|14:00))?";

description
"The date-and-time type is a profile of the IS0 8601
standard for representation of dates and times using the
Gregorian calendar. The profile is defined by the
date-time production in Section 5.6 of RFC 3339 and the
update defined in Section 2 of RFC 9557. The value of
60 for seconds is allowed only in the case of leap seconds.

The date-and-time type is compatible with the dateTime XML
schema dateTime type with the following notable exceptions:

(a) The date-and-time type does not allow negative years.

Schénwaélder Standards Track Page 12

RFC 9911

Common YANG Data Types

(b) The time-offset Z indicates that the date-and-time
value is reported in UTC and that the local time zone
reference point is unknown. The time-offset +00:00
indicates that the date-and-time value is reported in
UTC and that the local time reference point is UTC
(see Section 2 of RFC 9557).

This type is not equivalent to the DateAndTime textual
convention of the SMIv2 since RFC 3339 uses a different
separator between full-date and full-time and provides
higher resolution of time-secfrac.

The canonical format for date-and-time values with a known
time zone uses a numeric time zone offset that is calculated
using the device's configured known offset to UTC time. A
change of the device's offset to UTC time will cause
date-and-time values to change accordingly. Such changes
might happen periodically in case a server follows
automatically daylight saving time (DST) time zone offset
changes. The canonical format for date-and-time values
reported in UTC with an unknown local time zone offset SHOULD
use the time-offset Z and MAY use -00:00 for backwards
compatibility.";

reference

}

"RFC 3339: Date and Time on the Internet: Timestamps
RFC 9557: Date and Time on the Internet: Timestamps
with Additional Information
RFC 2579: Textual Conventions for SMIv2
XSD-TYPES: XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes";

typedef date {
type string {

pattern '[0-9]{4}-(
(

}

1[0-2]|0] [0-9
(1[0-3]|0 |

113[0-1])"
14:00)

+ (Z][\+\-])7,

description

Schonwaélder

"The date type represents a time-interval of the length
of a day, i.e., 24 hours. It includes an optional time
zone offset.

The date type is compatible with the XML schema date
type with the following notable exceptions:

(a) The date type does not allow negative years.

(b) The time-offset Z indicates that the date value is
reported in UTC and that the local time zone reference
point is unknown. The time-offset +00:00 indicates that
the date value is reported in UTC and that the local
time reference point is UTC (see Section 2 of RFC 9557).

The canonical format for date values with a known time

zone uses a numeric time zone offset that is calculated using
the device's configured known offset to UTC time. A change of
the device's offset to UTC time will cause date values

Standards Track

December 2025

Page 13

RFC 9911 Common YANG Data Types December 2025

to change accordingly. Such changes might happen periodically
in case a server follows automatically daylight saving time
(DST) time zone offset changes. The canonical format for
date values reported in UTC with an unknown local time zone
offset uses the time-offset Z.";
reference
"RFC 3339: Date and Time on the Internet: Timestamps
RFC 9557: Date and Time on the Internet: Timestamps
with Additional Information
XSD-TYPES: XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes";

}
typedef date-no-zone {
type date {
pattern '[0-9]{4}-(1[0-2]|0[1-9])-(8[1-9]|[1-2][0-9]|3[6-1])";
description
"The date-no-zone type represents a date without the optional
time zone offset information.";
}

typedef time {
type string {
pattern

'(0[8-91]1[0-9]|2[0-3]):[0-51[0-9]:([8-5]1[8-91]68)(\.[0-9]+)?"
} + "(ZI[\+\-]1((1[0-3]]0[0-9]):([0-5]1[0-9])|14:00))?";
description

"The time type represents an instance of time of zero duration
that recurs every day. It includes an optional time zone
offset. The value of 60 for seconds is allowed only in the
case of leap seconds.

The time type is compatible with the XML schema time
type with the following notable exception:

(a) The time-offset Z indicates that the time value is
reported in UTC and that the local time zone reference
point is unknown. The time-offset +00:00 indicates that
the time value is reported in UTC and that the local
time reference point is UTC (see Section 2 of RFC 9557).

The canonical format for time values with a known time
zone uses a numeric time zone offset that is calculated using
the device's configured known offset to UTC time. A change of
the device's offset to UTC time will cause time values
to change accordingly. Such changes might happen periodically
in case a server follows automatically daylight saving time
(DST) time zone offset changes. The canonical format for
time values reported in UTC with an unknown local time zone
offset uses the time-offset 7.";
reference
"RFC 3339: Date and Time on the Internet: Timestamps
RFC 9557: Date and Time on the Internet: Timestamps
with Additional Information
XSD-TYPES: XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes";

Schénwaélder Standards Track Page 14

RFC 9911 Common YANG Data Types December 2025

}
typedef time-no-zone {
type time {
pattern
"(0[@-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|608)(\.[B-9]+)?";
description
"The time-no-zone type represents a time without the optional
time zone offset information.";
}
typedef hours32 {
type int32;
units "hours";
description
"A period of time measured in units of hours.
The maximum time period that can be expressed is in the
range [-89478485 days 08:00:00 to 89478485 days 07:00:00] .
This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max"').";
}
typedef minutes32 {
type int32;
units "minutes";
description
"A period of time measured in units of minutes.
The maximum time period that can be expressed is in the
range [-1491308 days 2:08:00 to 1491308 days 2:07:00].
This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max"').";
}
typedef seconds32 {
type int32;
units "seconds"”;
description
"A period of time measured in units of seconds.
The maximum time period that can be expressed is in the
range [-24855 days 03:14:08 to 24855 days 03:14:07].
This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max"').";
}
typedef centiseconds32 {
type int32;
units "centiseconds";
description

Schénwaélder Standards Track Page 15

RFC 9911 Common YANG Data Types December 2025

"A period of time measured in units of 1067-2 seconds.

The maximum time period that can be expressed is in the
range [-248 days 13:13:56 to 248 days 13:13:56].

This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max"').";

}
typedef milliseconds32
type int32;
units "milliseconds";
description
"A period of time measured in units of 106%-3 seconds.
The maximum time period that can be expressed is in the
range [-24 days 20:31:23 to 24 days 20:31:23].
This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max"').";
}
typedef microseconds32 {
type int32;
units "microseconds";
description
"A period of time measured in units of 10%"-6 seconds.
The maximum time period that can be expressed is in the
range [-00:35:47 to 00:35:47].
This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max').";
}
typedef microseconds64 {
type int64;
units "microseconds";
description
"A period of time measured in units of 10”"-6 seconds.
The maximum time period that can be expressed is in the
range [-106751991 days 04:00:54 to 106751991 days 04:00:54].
This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max').";
}
typedef nanoseconds32 {
type int32;
units "nanoseconds";
description

"A period of time measured in units of 106%-9 seconds.

Schénwaélder Standards Track Page 16

RFC 9911

}

Common YANG Data Types December 2025

The maximum time period that can be expressed is in the
range [-00:00:02 to 00:00:02].

This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max"').";

typedef nanoseconds64 {

ty
un

pe int64;
its "nanoseconds";

description

}

"A period of time measured in units of 1067-9 seconds.

The maximum time period that can be expressed is in the
range [-106753 days 23:12:44 to 106752 days 0:47:16].

This type should be range-restricted in situations
where only non-negative time periods are desirable
(i.e., range '@..max').";

typedef timeticks {
type uint32;
description

"The timeticks type represents a non-negative integer that
represents the time, modulo 2232 (4294967296 decimal), in
hundredths of a second between two epochs. When a schema
node is defined that uses this type, the description of
the schema node identifies both of the reference epochs.

In the value set and its semantics, this type is equivalent
to the TimeTicks type of the SMIv2.";

reference

}

"RFC 2578: Structure of Management Information Version 2
(SMIv2)";

typedef timestamp {
type timeticks;
description

Schonwaélder

"The timestamp type represents the value of an associated
timeticks schema node instance at which a specific occurrence
happened. The specific occurrence must be defined in the
description of any schema node defined using this type. When
the specific occurrence occurred prior to the last time the
associated timeticks schema node instance was zero, then the
timestamp value is zero.

Note that this requires all timestamp values to be reset to
zero when the value of the associated timeticks schema node
instance reaches 497+ days and wraps around to zero.

The associated timeticks schema node must be specified
in the description of any schema node using this type.

In the value set and its semantics, this type is equivalent
to the TimeStamp textual convention of the SMIv2.";

Standards Track Page 17

RFC 9911 Common YANG Data Types December 2025

reference
"RFC 2579: Textual Conventions for SMIv2";
}

/*** collection of generic address types ***/

typedef phys-address {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?";

description
"Represents media- or physical-level addresses represented
as a sequence of octets, each octet represented by two
hexadecimal numbers. Octets are separated by colons. The
canonical representation uses lowercase characters.

In the value set and its semantics, this type is equivalent
to the PhysAddress textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}

typedef mac-address {
type string {
pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}";

description
"The mac-address type represents a 48-bit IEEE 802 Media
Access Control (MAC) address. The canonical representation
uses lowercase characters. Note that there are IEEE 8062 MAC
addresses with a different length that this type cannot
represent. The phys-address type may be used to represent
physical addresses of varying length.

In the value set and its semantics, this type is equivalent
to the MacAddress textual convention of the SMIv2.";
reference
"IEEE 802: IEEE Standard for Local and Metropolitan Area
Networks: Overview and Architecture
RFC 2579: Textual Conventions for SMIv2";
}

/*** collection of XML-specific types ***/

typedef xpath1.0 {
type string;
description
"This type represents an XPATH 1.0 expression.

When a schema node is defined that uses this type, the
description of the schema node MUST specify the XPath
context in which the XPath expression is evaluated.";
reference
"XPATH: XML Path Language (XPath) Version 1.0";
}

/*** collection of string types ***/

Schénwaélder Standards Track Page 18

RFC 9911 Common YANG Data Types

typedef hex-string {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?";

description
"A hexadecimal string with octets represented as hex digits
separated by colons. The canonical representation uses
lowercase characters.";

}

typedef uuid {
type string {
pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-"'
+ '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}";

}

description
"A Universally Unique IDentifier in the string representation
defined in RFC 4122. The canonical representation uses
lowercase characters.
The following is an example of a UUID in string
representation:
f81d4fae-7dec-11d0-a765-00abBc91e6bf6.

reference
"RFC 4122: A Universally Unique IDentifier (UUID) URN

Namespace" ;

}

typedef dotted-quad {
type string {
pattern
"(([e-9]1|[1-9][e-9 0-9][0-9

111[8-9][6-9]|2[0-4]
+ '([e-9]1[1-9][6-9]|1[6-9][0-9]|2 11

[[
0-4][0-9]|25[6-5])";
description
"An unsigned 32-bit number expressed in the dotted-quad
notation, i.e., four octets written as decimal numbers
and separated with the '.' (full stop) character.";

}

typedef language-tag {
type string;
description
"A language tag according to RFC 5646 (BCP 47). The
canonical representation uses lowercase characters.

Values of this type must be well-formed language tags,
in conformance with the definition of well-formed tags
in BCP 47. Implementations MAY further limit the values
they accept to those permitted by a 'validating'
processor, as defined in BCP 47.

The canonical representation of values of this type is
aligned with the SMIv2 LangTag textual convention for
language tags fitting the length constraints imposed
by the LangTag textual convention.";

reference

Schonwaélder Standards Track

9-9]1125[0-5])\.){3}"
I

December 2025

Page 19

RFC 9911 Common YANG Data Types December 2025

"RFC 5646: Tags for Identifying Languages
RFC 5131: A MIB Textual Convention for Language Tags";
}

/*** collection of YANG-specific types ***/

typedef yang-identifier {

type string {
length "1..max";
pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*";

}

description
"A YANG identifier string as defined by the 'identifier’
rule in Section 14 of RFC 7950. An identifier must
start with an alphabetic character or an underscore
followed by an arbitrary sequence of alphabetic or
numeric characters, underscores, hyphens, or dots.

This definition conforms to YANG 1.1 defined in RFC

7950. An earlier version of this definition excluded

all identifiers starting with any possible combination

of the lowercase or uppercase character sequence 'xml',

as required by YANG 1 defined in RFC 60206. If this type

is used in a YANG 1 context, then this restriction still

applies.”;

reference

"RFC 7950: The YANG 1.1 Data Modeling Language

RFC 6020: YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)";

}
}

<CODE ENDS>

4. Internet Protocol Suite Types

The "ietf-inet-types" YANG module references [RFC0768], [REC0791], [RFC0952], [RFC1034],
[RFC1123], [RFC1930], [RFC2317], [RFC2474], [RFC2780], [RFC2782], [RFC3289], [RFC3305],
[RFC3595], [RFC3927], [RFC3986], [REC4001], [RFC4007], [RFC4271], [RFC4291], [RFC4340],
[RFC4592], [RFC5017], [RFC5322], [RFC5890], [RFC5952], [RFC6793], [REC8200], [RFCI260],
[RFC9293], and [RFC9499].

<CODE BEGINS> file "ietf-inet-types@2025-12-01.yang"

module ietf-inet-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
prefix inet;

organization
"IETF Network Modeling (NETMOD) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>

Schénwaélder Standards Track Page 20

RFC 9911 Common YANG Data Types December 2025

Editor: Juergen Schoenwaelder
<mailto:jschoenwaelder@constructor.university>";
description
"This module contains a collection of generally useful derived
YANG data types for Internet addresses and related things.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
"MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.

Copyright (c) 2025 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9911;
see the RFC itself for full legal notices.";

revision 2025-12-01 {
description

"This revision adds the following new data types:
- inet:ip-address-and-prefix
- inet:ipv4-address-and-prefix
- inet:ipv6-address-and-prefix
- inet:protocol-number
- inet:upper-layer-protocol-number
- inet:host-name
- inet:email-address
- inet:ip-address-1link-local
- inet:ipv4-address-1link-local
- inet:ipv6-address-link-local
The inet:host union was changed to use inet:host-name instead
of inet:domain-name. Several pattern statements have been

improved.";
reference
"RFC 9911: Common YANG Data Types";
}
revision 2013-87-15 {
description

"This revision adds the following new data types:
- inet:ip-address-no-zone
- inet:ipv4-address-no-zone
- inet:ipv6-address-no-zone";
reference
"RFC 6991: Common YANG Data Types";
}

revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";

Schénwaélder Standards Track Page 21

RFC 9911 Common YANG Data Types December 2025

}

/*** collection of types related to protocol fields ***/

typedef ip-version {
type enumeration {
enum unknown {
value 0;
description
"An unknown or unspecified version of the Internet
protocol.";

enum ipv4 {
value 1;
description
"The IPv4 protocol as defined in RFC 791.";

enum ipvé {
value 2;
description
"The IPv6 protocol as defined in RFC 8200.";
}
}

description
"This value represents the version of the IP protocol.

In the value set and its semantics, this type is equivalent

to the InetVersion textual convention of the SMIv2.";
reference

"RFC 791: Internet Protocol

RFC 8200: Internet Protocol, Version 6 (IPv6) Specification

RFC 4001: Textual Conventions for Internet Network Addresses";

}

typedef dscp {
type uint8 {
range "0..63";
}

description
"The dscp type represents a Differentiated Services Code Point
that may be used for marking packets in a traffic stream.

In the value set and its semantics, this type is equivalent
to the Dscp textual convention of the SMIv2.";
reference

"RFC 3289: Management Information Base for the Differentiated
Services Architecture

RFC 2474: Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers

RFC 2786: IANA Allocation Guidelines For Values In
the Internet Protocol and Related Headers";

}

typedef ipv6-flow-label
type uint32 {
range "©..1048575";
}

description

Schénwaélder Standards Track Page 22

RFC 9911 Common YANG Data Types December 2025

"The ipv6-flow-label type represents the flow identifier or
Flow Label in an IPv6 packet header that may be used to
discriminate traffic flows.

In the value set and its semantics, this type is equivalent
to the IPv6FlowLabel textual convention of the SMIv2.":
reference
"RFC 3595: Textual Conventions for IPvé Flow Label
RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
}

typedef port-number {
type uint16 {
range "@..65535";
}

description
"The port-number type represents a 16-bit port number of an
Internet transport-layer protocol such as UDP, TCP, DCCP, or
SCTP.

Port numbers are assigned by IANA. The current list of
all assignments is available from <https://www.iana.org/>.

Note that the port number value zero is reserved by IANA. 1In
situations where the value zero does not make sense, it can
be excluded by subtyping the port-number type.

In the value set and its semantics, this type is equivalent

to the InetPortNumber textual convention of the SMIv2.";
reference

"RFC 768: User Datagram Protocol

RFC 9293: Transmission Control Protocol (TCP)

RFC 9260: Stream Control Transmission Protocol

RFC 4340: Datagram Congestion Control Protocol (DCCP)

RFC 4001: Textual Conventions for Internet Network Addresses";

}

typedef protocol-number {
type uint8;
description
"The protocol-number type represents an 8-bit Internet
protocol number, carried in the 'protocol' field of the
IPv4 header or in the 'next header' field of the IPv6
header.

Protocol numbers are assigned by IANA. The current list of
all assignments is available from <https://www.iana.org/>.";
reference
"RFC 791: Internet Protocol
RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
}

typedef upper-layer-protocol-number {
type protocol-number;
description
"The upper-layer-protocol-number represents the upper-layer
protocol number carried in an IP packet. For IPv6 packets
with extension headers, this is the protocol number carried

Schénwaélder Standards Track Page 23

RFC 9911 Common YANG Data Types December 2025

in the last 'next header' field of the chain of IPv6 extension
headers.";
reference
"RFC 791: Internet Protocol
RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
}

/*** collection of types related to autonomous systems ***/

typedef as-number {

type uint32;

description
"The as-number type represents autonomous system numbers
that identify an Autonomous System (AS). An AS is a set
of routers under a single technical administration, using
an interior gateway protocol and common metrics to route
packets within the AS, and using an exterior gateway
protocol to route packets to other ASes. IANA maintains
the AS number space and has delegated large parts to the
regional registries.

Autonomous system numbers were originally limited to 16
bits. BGP extensions have enlarged the autonomous system
number space to 32 bits. This type therefore uses an uint32
base type without a range restriction in order to support

a larger autonomous system number space.

In the value set and its semantics, this type is equivalent

to the InetAutonomousSystemNumber textual convention of

the SMIv2.";

reference

"RFC 1930: Guidelines for creation, selection, and registration
of an Autonomous System (AS)

RFC 4271: A Border Gateway Protocol 4 (BGP-4)

RFC 4001: Textual Conventions for Internet Network Addresses

RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
Number Space";

}

/*** collection of types related to IP addresses and hostnames ***/

typedef ip-address {
type union {
type ipv4-address;
type ipv6-address;

description
"The ip-address type represents an IP address and is IP
version neutral. The format of the textual representation
implies the IP version. This type supports scoped addresses
by allowing zone identifiers in the address format.";
reference
"RFC 4007: IPv6 Scoped Address Architecture";

}

typedef ipv4-address {
type string {
pattern

Schénwaélder Standards Track Page 24

RFC 9911

Common YANG Data Types December 2025

description

}

"The ipv4-address type represents an IPv4 address in
dotted-quad notation. The IPv4 address may include a zone
index, separated by a % sign. If a system uses zone names
that are not represented in UTF-8, then an implementation
needs to use some mechanism to transform the local name
into UTF-8. The definition of such a mechanism is outside
the scope of this document.

The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.

The canonical format for the zone index is the numerical
format";

typedef ipv6-address {
type string {

pattern "((:][0-9a-fA-F]{0,4}):)([6-9a-fA-F]{0,4}:){0,5}"
+ '((([6-9a-fA-F]{0,4}:)?(:|[8-9a-fA-F]{0,4})) |’
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}"
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[6-9])))"
+ ' (%[A-Za-z0-9][A-Za-z0-9\-\._~/]1*)?";
Dattern CCCIA TR (([T+ A TH) T C*N L a*))) |
+ (AT) * AT R) 20 s ([]+)* [20]+)?)
+ ' (%.+)?";
}
description

"The ipv6-address type represents an IPv6 address in full,
mixed, shortened, and shortened-mixed notation. The IPv6
address may include a zone index, separated by a % sign.
If a system uses zone names that are not represented in
UTF-8, then an implementation needs to use some mechanism
to transform the local name into UTF-8. The definition of
such a mechanism is outside the scope of this document.

The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.

The canonical format of IPv6 addresses uses the textual
representation defined in Section 4 of RFC 5952. The
canonical format for the zone index is the numerical
format as described in Section 11.2 of RFC 4007.";

reference

"RFC 4291: IP Version 6 Addressing Architecture

RFC 4007: IPv6 Scoped Address Architecture

RFC 5952: A Recommendation for IPv6 Address Text
Representation”;

Schénwaélder Standards Track Page 25

RFC 9911 Common YANG Data Types December 2025

}

typedef ip-address-no-zone {
type union {
type ipv4-address-no-zone;
type ipv6-address-no-zone;

description
"The ip-address-no-zone type represents an IP address and is
IP version neutral. The format of the textual representation
implies the IP version. This type does not support scoped
addresses since it does not allow zone identifiers in the
address format.";

reference
"RFC 4007: IPv6 Scoped Address Architecture";

}

typedef ipv4-address-no-zone {
type ipv4-address {
pattern '[@-9\.]*';

description
"An IPv4 address without a zone index. This type, derived
from the type ipv4-address, may be used in situations where
the zone is known from the context and no zone index is
needed.";

}

typedef ipv6-address-no-zone {
type ipv6-address {
pattern '[0-9a-fA-F:\.]*";

}

description
"An IPv6 address without a zone index. This type, derived
from the type ipv6-address, may be used in situations where
the zone is known from the context and no zone index is
needed.";

reference

"RFC 4291: IP Version 6 Addressing Architecture

RFC 4007: IPv6 Scoped Address Architecture

RFC 5952: A Recommendation for IPv6 Address Text
Representation”;

}

typedef ip-address-link-local {
type union {
type ipv4-address-link-local;
type ipv6-address-link-local;

description
"The ip-address-1link-local type represents a link-local IP
address and is IP version neutral. The format of the textual
representation implies the IP version.";

}

typedef ipv4-address-link-local {
type ipv4-address {
pattern '169\.254\..*";

Schénwaélder Standards Track Page 26

RFC 9911 Common YANG Data Types December 2025

}

description
"The ipv4-address-link-local type represents a link-local IPv4
address in the prefix 169.254.0.0/16 as defined in Section 2.1
of RFC 3927.";

reference

"RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses"”;
}

typedef ipv6-address-link-local {
type ipv6-address {
pattern '[fF][eE]80:.%

}

description
"The ipv6-address-link-local type represents a link-local IPv6
address in the prefix fe80::/10 as defined in Section 2.5.6 of
RFC 4291.";

reference

"RFC 4291: IP Version 6 Addressing Architecture";
}

typedef ip-prefix {
type union {
type ipv4-prefix;
type ipv6-prefix;

description
"The ip-prefix type represents an IP prefix and is IP
version neutral. The format of the textual representations
implies the IP version.";

}

typedef ipv4-prefix {
type string {

pattern
"(([e-9]|[1-9][e6-9]|1[0-9][06-9]|2[0-4][0-9]|25[0-5])\.){3}"
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][6-9]|25[0-5])"
+ '/(([e-9])([1-2][e-9])|(3[6-2]))";
description

"The ipv4-prefix type represents an IPv4 prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 32.

A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to ©.

The canonical format of an IPv4 prefix has all bits of
the IPv4 address set to zero that are not part of the
IPv4 prefix.

The definition of ipv4-prefix does not require that bits

that are not part of the prefix be set to zero. However,
implementations have to return values in canonical format,
which requires non-prefix bits to be set to zero. This means
that 192.0.2.1/24 must be accepted as a valid value, but it
will be converted into the canonical format 192.6.2.6/24.";

Schénwaélder Standards Track Page 27

RFC 9911 Common YANG Data Types December 2025

}

typedef ipvé-prefix {
type string {
pattern "((:][0-9a-fA-F]{0@,
9-9a-fA-F]{0, 4

4}
}:
5[0-5]|2[0-4][0-
9
2
+

):)([0-9a-fA-F]{0,
[)?2(:|[0-9a-fA-F]{0
2 9]|[01]?[0-9]?[0-9
[6-5]|2[06-4][6-9]]| 17[0-9]7[0-9])
([e8-9] {2}) 1 (11 (1
Arl+r) [~]+) |
[A:]+: 17231 ?)
+)'

)
(:
I
11[0
B (1[e-1][e- 9])I

[

1
8-91¢ 1
pattern Cnesl)AL
)2 ([

(
(
5
(
[) | *))
(SEREICIEY

((?
((]
(2 [
(/) (I |
(({63 ((I A
(()*[7:] (I
(/.

}

description
"The ipv6-prefix type represents an IPv6 prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 128.

A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 9.

The canonical format of an IPv6 prefix has all bits of

the IPv6 address set to zero that are not part of the

IPv6 prefix. Furthermore, the IPv6 address is represented
as defined in Section 4 of RFC 5952.

The definition of ipvé6-prefix does not require that bits

that are not part of the prefix be set to zero. However,

implementations have to return values in canonical format,

which requires non-prefix bits to be set to zero. This means

that 2001:db8::1/64 must be accepted as a valid value, but it

will be converted into the canonical format 2001:db8::/64.":
reference

"RFC 5952: A Recommendation for IPv6 Address Text

Representation”;

}

typedef ip-address-and-prefix {
type union {
type ipv4-address-and-prefix;
type ipv6-address-and-prefix;

description
"The ip-address-and-prefix type represents an IP address and
prefix and is IP version neutral. The format of the textual
representations implies the IP version.";

}

typedef ipv4-address-and-prefix {
type string {

pattern
'(([0-9]|[1 9][e-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
"([0-9]1[1-9][0-9]|1[6-9][0-9]|2[0-4][0-9]|25[0-5])"
+ '/(([e-9])1([1-2][e-9])|(3[6-2]))";
description

"The ipv4-address-and-prefix type represents an IPv4

Schénwaélder Standards Track Page 28

RFC 9911 Common YANG Data Types December 2025

address and an associated IPv4 prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 32.

A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.";

}

typedef ipv6-address-and-prefix {
type string {

pattern |[6-9a-fA-F]1{0,4}):
[0-9a-fA-F]1{0,4}:)?
25[e8-5]|2[0-4][0-9
[6-5]|2[0-4][0-9
([e-9])1([8-91{2})
o9]+)63 (([*:]+:
[A:140)*[A:]4)2:
+

)'.

) ([0-9a-fA-F1{
(:|1[0-9a-fA-F]
-9]|[@1]?[0-9]?[0
11[61]?[6-9]?[6-9
})1(1[e-1][6-91)|
+) 1\ %))
tlr)®[Ac]+) 7

?
]
[
I
pattern A
(

[
1
-
33

[

O
+ 1 (((
+ 1 (((
+ (25 I
+ (U

(I [
+ 1 ((((
|(/

}

description
"The ipv6-address-and-prefix type represents an IPv6
address and an associated IPv6 prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 128.

A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to ©.

The canonical format requires that the IPv6 address is
represented as defined in Section 4 of RFC 5952.";
reference
"RFC 5952: A Recommendation for IPv6 Address Text
Representation”;

}

/*** collection of domain name and URI types ***/

typedef domain-name {
type string {
length "1..253";
pattern '((([a-zA-Z0- ? ([a-zA-Z0-9\-_]){0,61})?[a-zA-ZB-9]\.)*'
9 a-

_]
q

+ '([a-zA-Z0- zA-Z0-9\-_]1){0,61})?[a-zA-Z0-9]\.?)"
+ N

}

description

"The domain-name type represents a DNS domain name. The
name SHOULD be fully qualified whenever possible. This
type does not support wildcards (see RFC 4592) or
classless in-addr.arpa delegations (see RFC 2317).

Internet domain names are only loosely specified. Section
3.5 of RFC 1034 recommends a syntax (modified in Section
2.1 of RFC 1123). The pattern above is intended to allow
for current practice in domain name use and some possible
future expansion. Note that Internet host names have a
stricter syntax (described in RFC 952) than the DNS

Schénwaélder Standards Track Page 29

RFC 9911

}

Common YANG Data Types December 2025

recommendations in RFCs 1034 and 1123. Schema nodes
representing host names should use the host-name type
instead of the domain-type.

The encoding of DNS names in the DNS protocol is limited
to 255 characters. Since the encoding consists of labels
prefixed by a length bytes and there is a trailing NULL
byte, only 253 characters can appear in the textual dotted
notation.

The description clause of schema nodes using the domain-name
type MUST describe when and how these names are resolved to

IP addresses. Note that the resolution of a domain-name value
may require to query multiple DNS records (e.g., A for IPv4
and AAAA for IPv6). The order of the resolution process and
which DNS record takes precedence can either be defined
explicitly or depend on the configuration of the

resolver.

Domain-name values use the US-ASCII encoding. Their canonical
format uses lowercase US-ASCII characters. Internationalized
domain names MUST be A-labels as per RFC 5890.";

reference

"RFC 952: DoD Internet Host Table Specification

RFC 1034: Domain Names - Concepts and Facilities

RFC 1123: Requirements for Internet Hosts -- Application
and Support

RFC 2317: Classless IN-ADDR.ARPA delegation

RFC 2782: A DNS RR for specifying the location of services
(DNS SRV)

RFC 4592: The Role of Wildcards in the Domain Name System

RFC 5890: Internationalized Domain Names in Applications
(IDNA): Definitions and Document Framework

RFC 9499: DNS Terminology";

typedef host-name {

}

type domain-name {

length "2..max";
pattern '[a-zA-Z0-9\-\.]+"';

description

"The host-name type represents (fully qualified) host names.
Host names must be at least two characters long (see RFC 952),
and they are restricted to labels consisting of letters,
digits, and hyphens separated by dots (see RFCs 1123 and
952).";

reference

"RFC 952: DoD Internet Host Table Specification
RFC 1123: Requirements for Internet Hosts -- Application
and Support";

typedef host {

type union {

type ip-address;
type host-name;

Schénwaélder Standards Track Page 30

RFC 9911

}

Common YANG Data Types

description

"The host type represents either an IP address or a (fully
qualified) host name.";

typedef uri {

}

type string {

pattern '[a-z][a-zB-9+.-]*:.*";

description

"The uri type represents a Uniform Resource Identifier
(URI) as defined by the rule 'URI' in RFC 3986.

Objects using the uri type MUST be in US-ASCII encoding
and MUST be normalized as described in Sections 6.2.1,
6.2.2.1, and 6.2.2.2 of RFC 3986. Characters that can be
represented without using percent-encoding are represented
as characters (without percent-encoding), and all
case-insensitive characters are set to lowercase except
for hexadecimal digits within a percent-encoded triplet,
which are normalized to uppercase as described in

Section 6.2.2.1 of RFC 3986.

The purpose of this normalization is to help provide
unique URIs. Note that this normalization is not
sufficient to provide uniqueness. Two URIs that are
textually distinct after this normalization may still be
equivalent.

Objects using the uri type may restrict the schemes that
they permit. For example, 'data:' and 'urn:' schemes
might not be appropriate.

A zero-length URI is not a valid URI. This can be used to
express 'URI absent' where required.

In the value set and its semantics, this type is equivalent
to the Uri SMIv2 textual convention defined in RFC 5017.";

reference

"RFC 3986: Uniform Resource Identifier (URI): Generic Syntax

RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs,
and Uniform Resource Names (URNs): Clarifications
and Recommendations

RFC 5017: MIB Textual Conventions for Uniform Resource
Identifiers (URIs)";

typedef email-address {

type string {

0.+

pattern

description

"The email-address type represents an internationalized
email address.

The email address format is defined by the addr-spec
ABNF rule in Section 3.4.1 of RFC 5322. This format has

Schonwaélder Standards Track

December 2025

Page 31

RFC 9911 Common YANG Data Types December 2025

been extended by RFC 6532 to support internationalized
email addresses. Implementations MUST support the
internationalization extensions of RFC 6532. Support
of the obsolete obs-local-part, obs-domain, and
obs-qtext parts of RFC 5322 is not required.

The domain part may use both A-labels and U-labels
(see RFC 5890). The canonical format of the domain part
uses lowercase characters and U-labels (RFC 5890) where
applicable."”;
reference
"RFC 5322: Internet Message Format
RFC 5890: Internationalized Domain Names in Applications
(IDNA): Definitions and Document Framework
RFC 6531: SMTP Extension for Internationalized Email";

}
}

<CODE ENDS>

5. TANA Considerations

This document reuses the URIs for "ietf-yang-types" and "ietf-inet-types" in the "IETF XML
Registry" [RFC3688].

Per this document, IANA has updated the "YANG Module Names" registry to reference this RFC
instead of [RFC6991] for the "ietf-yang-types" and "ietf-inet-types" modules. Following the format
in [RFC6020], these registrations have been made.

Name: ietf-yang-types

Namespace: urn:etf:params:xml:ns:yang:ietf-yang-types
Prefix: yang

Reference: RFC 9911

Name: ietf-inet-types

Namespace: urn:etf:params:xml:ns:yang:ietf-inet-types
Prefix: inet

Reference: RFC 9911

6. Security Considerations

This document defines common data types using the YANG data modeling language. The
definitions themselves have no security impact on the Internet, but the usage of these definitions
in concrete YANG modules might have. The security considerations spelled out in the YANG
specification [RFC7950] apply for this document as well.

Schénwaélder Standards Track Page 32

RFC 9911 Common YANG Data Types December 2025

7. References

7.1. Normative References

[RFC2119]

[RFC3339]

[RFC3688]

[RFC3986]

[RFC4007]

[RFC4122]

[RFC4291]

[RFC6020]

[RFC7950]

[RFC8174]

[RFC8294]

[RFC9499]

Schonwaélder

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC
3339, DOI 10.17487/RFC3339, July 2002, <https://www.rfc-editor.org/info/
rfc3339>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688,
January 2004, <https://www.rfc-editor.org/info/rfc3688>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier
(URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.

Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and B. Zill, "IPv6 Scoped
Address Architecture”, RFC 4007, DOI 10.17487/RFC4007, March 2005, <https://
www.rfc-editor.org/info/rfc4007>.

Leach, P, Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN
Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, <https://www.rfc-
editor.org/info/rfc4122>.

Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture"”, RFC 4291, DOI
10.17487/RFC4291, February 2006, <https://www.rfc-editor.org/info/rfc4291>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONEF)", RFC 6020, DOI 10.17487/RFC6020, October
2010, <https://www.rfc-editor.org/info/rfc6020>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI
10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Liu, X, Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types
for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, December 2017, <https://
www.rfc-editor.org/info/rfc8294>.

Hoffman, P. and K. Fujiwara, "DNS Terminology", BCP 219, RFC 9499, DOI
10.17487/RFC9499, March 2024, <https://www.rfc-editor.org/info/rfc9499>.

Standards Track Page 33

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4007
https://www.rfc-editor.org/info/rfc4007
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc9499

RFC 9911

[REC9557]

[XPATH]

[XSD-TYPES]

Common YANG Data Types December 2025

Sharma, U. and C. Bormann, "Date and Time on the Internet: Timestamps with
Additional Information", RFC 9557, DOI 10.17487/RFC9557, April 2024, <https://
www.rfc-editor.org/info/rfc9557>.

Clark, J., Ed. and S. DeRose, Ed., "XML Path Language (XPath) Version 1.0", W3C
Recommendation, 16 November 1999, <http://www.w3.org/TR/xpath-10>.

Peterson, D., Ed., Gao, S., Ed., Malhotra, A., Ed., Sperberg-McQueen, C., Ed., and H.
S. Thompson, Ed., "W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes", W3C Recommendation, 5 April 2012, <https://www.w3.0rg/TR/
xmlschemall-2/>.

7.2. Informative References

[RFC0768]

[REC0791]

[RFC0952]

[RFC1034]

[RFC1123]

[RFC1930]

[RFC2317]

[RFC2474]

[RFC2578]

[RFC2579]

Schonwaélder

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768,
August 1980, <https://www.rfc-editor.org/info/rfc768>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI 10.17487/RFC0791, September
1981, <https://www.rfc-editor.org/info/rfc791>.

Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet host table specification",
RFC 952, DOI 10.17487/RFC0952, October 1985, <https://www.rfc-editor.org/info/
rfc952>.

Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI
10.17487/RFC1034, November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Braden, R, Ed., "Requirements for Internet Hosts - Application and Support",
STD 3, RFC 1123, DOI 10.17487/RFC1123, October 1989, <https://www.rfc-
editor.org/info/rfc1123>.

Hawkinson, J. and T. Bates, "Guidelines for creation, selection, and registration
of an Autonomous System (AS)", BCP 6, RFC 1930, DOI 10.17487/RFC1930, March
1996, <https://www.rfc-editor.org/info/rfc1930>.

Eidnes, H., de Groot, G., and P. Vixie, "Classless IN-ADDR.ARPA delegation", BCP
20, RFC 2317, DOI 10.17487/RFC2317, March 1998, <https://www.rfc-editor.org/
info/rfc2317>.

Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, DOI 10.17487/
RFC2474, December 1998, <https://www.rfc-editor.org/info/rfc2474>.

McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Structure of
Management Information Version 2 (SMIv2)", STD 58, RFC 2578, DOI 10.17487/
RFC2578, April 1999, <https://www.rfc-editor.org/info/rfc2578>.

McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Textual
Conventions for SMIv2", STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999,
<https://www.rfc-editor.org/info/rfc2579>.

Standards Track Page 34

https://www.rfc-editor.org/info/rfc9557
https://www.rfc-editor.org/info/rfc9557
http://www.w3.org/TR/xpath-10
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc952
https://www.rfc-editor.org/info/rfc952
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1930
https://www.rfc-editor.org/info/rfc2317
https://www.rfc-editor.org/info/rfc2317
https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc2578
https://www.rfc-editor.org/info/rfc2579

RFC 9911

[RFC2780]

[RFC2782]

[RFC2856]

[RFC3289]

[RFC3305]

[RFC3595]

[RFC3927]

[RFC4001]

[REC4271]

[RFC4340]

[RFC4502]

[RFC4592]

Schonwaélder

Common YANG Data Types

Bradner, S. and V. Paxson, "TANA Allocation Guidelines For Values In the
Internet Protocol and Related Headers", BCP 37, RFC 2780, DOI 10.17487/
RFC2780, March 2000, <https://www.rfc-editor.org/info/rfc2780>.

Gulbrandsen, A., Vixie, P, and L. Esibov, "A DNS RR for specifying the location of
services (DNS SRV)", RFC 2782, DOI 10.17487/RFC2782, February 2000, <https://
www.rfc-editor.org/info/rfc2782>.

Bierman, A., McCloghrie, K., and R. Presuhn, "Textual Conventions for
Additional High Capacity Data Types", RFC 2856, DOI 10.17487/RFC2856, June
2000, <https://www.rfc-editor.org/info/rfc2856>.

Baker, F, Chan, K., and A. Smith, "Management Information Base for the
Differentiated Services Architecture”, RFC 3289, DOI 10.17487/RFC3289, May
2002, <https://www.rfc-editor.org/info/rfc3289>.

Mealling, M., Ed. and R. Denenberg, Ed., "Report from the Joint W3C/IETF URI
Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and
Uniform Resource Names (URNSs): Clarifications and Recommendations", RFC
3305, DOI 10.17487/RFC3305, August 2002, <https://www.rfc-editor.org/info/
rfc3305>.

Wijnen, B., "Textual Conventions for IPv6 Flow Label", RFC 3595, DOI 10.17487/
RFC3595, September 2003, <https://www.rfc-editor.org/info/rfc3595>.

Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of IPv4 Link-
Local Addresses", RFC 3927, DOI 10.17487/RFC3927, May 2005, <https://www.rfc-
editor.org/info/rfc3927>.

Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual
Conventions for Internet Network Addresses", RFC 4001, DOI 10.17487/RFC4001,
February 2005, <https://www.rfc-editor.org/info/rfc4001>.

Rekhter, Y, Ed,, Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4
(BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <https://www.rfc-
editor.org/info/rfc4271>.

Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion Control Protocol
(DCCP)", RFC 4340, DOI 10.17487/RFC4340, March 2006, <https://www.rfc-
editor.org/info/rfc4340>.

Waldbusser, S., "Remote Network Monitoring Management Information Base
Version 2", RFC 4502, DOI 10.17487/RFC4502, May 2006, <https://www.rfc-
editor.org/info/rfc4502>.

Lewis, E., "The Role of Wildcards in the Domain Name System", RFC 4592, DOI
10.17487/RFC4592, July 2006, <https://www.rfc-editor.org/info/rfc4592>.

Standards Track

December 2025

Page 35

https://www.rfc-editor.org/info/rfc2780
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2856
https://www.rfc-editor.org/info/rfc3289
https://www.rfc-editor.org/info/rfc3305
https://www.rfc-editor.org/info/rfc3305
https://www.rfc-editor.org/info/rfc3595
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc4001
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4502
https://www.rfc-editor.org/info/rfc4502
https://www.rfc-editor.org/info/rfc4592

RFC 9911

[RFC5017]

[RFC5131]

[RFC5322]

[RFC5646]

[REC5890]

[RFC5952]

[RFC6021]

[RFC6241]

[RFC6793]

[RFC6991]

[RFC8200]

[RFC9260]

[RFC9293]

[1SO-9834-1]

Schonwaélder

Common YANG Data Types December 2025

McWalter, D., Ed., "MIB Textual Conventions for Uniform Resource Identifiers
(URIs)", RFC 5017, DOI 10.17487/RFC5017, September 2007, <https://www.rfc-
editor.org/info/rfc5017>.

McWalter, D., Ed., "A MIB Textual Convention for Language Tags", RFC 5131, DOI
10.17487/RFC5131, December 2007, <https://www.rfc-editor.org/info/rfc5131>.

Resnick, P, Ed., "Internet Message Format", RFC 5322, DOI 10.17487/RFC5322,
October 2008, <https://www.rfc-editor.org/info/rfc5322>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC
5646, DOI 10.17487/RFC5646, September 2009, <https://www.rfc-editor.org/info/
rfc5646>.

Klensin, J., "Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework", RFC 5890, DOI 10.17487/RFC5890,
August 2010, <https://www.rfc-editor.org/info/rfc5890>.

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text
Representation”, RFC 5952, DOI 10.17487/RFC5952, August 2010, <https://
www.rfc-editor.org/info/rfc5952>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6021, DOI 10.17487/
RFC6021, October 2010, <https://www.rfc-editor.org/info/rfc6021>.

Enns, R, Ed,, Bjorklund, M., Ed., Schoenwaelder,]J., Ed., and A. Bierman, Ed.,
"Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241,
June 2011, <https://www.rfc-editor.org/info/rfc6241>.

Vohra, Q. and E. Chen, "BGP Support for Four-Octet Autonomous System (AS)
Number Space", RFC 6793, DOI 10.17487/RFC6793, December 2012, <https://
www.rfc-editor.org/info/rfc6793>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/
RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD
86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/
rfc8200>.

Stewart, R., Tixen, M., and K. Nielsen, "Stream Control Transmission Protocol",
RFC 9260, DOI 10.17487/RFC9260, June 2022, <https://www.rfc-editor.org/info/
rfc9260>.

Eddy, W, Ed., "Transmission Control Protocol (TCP)", STD 7, RFC 9293, DOI
10.17487/RFC9293, August 2022, <https://www.rfc-editor.org/info/rfc9293>.

ISO/IEC, "Information technology -- Open Systems Interconnection -- Procedures
for the operation of OSI Registration Authorities: General procedures and top
arcs of the International Object Identifier tree", ISO/IEC 9834-1:2008, 2008,
<https://www.iso.org/standard/51424.html>.

Standards Track Page 36

https://www.rfc-editor.org/info/rfc5017
https://www.rfc-editor.org/info/rfc5017
https://www.rfc-editor.org/info/rfc5131
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc6021
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6793
https://www.rfc-editor.org/info/rfc6793
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9293
https://www.iso.org/standard/51424.html

RFC 9911 Common YANG Data Types December 2025

[IEEE-802-2001] IEEE, "IEEE Standard for Local and Metropolitan Area Networks: Overview
and Architecture", IEEE Std 802-2001, DOI 10.1109/IEEESTD.2002.93395,
February 2002, <https://doi.org/10.1109/IEEESTD.2002.93395>.

[Err4076] RFC Errata, Erratum ID 4076, RFC 6991, <https://www.rfc-editor.org/errata/
€id4076>.

[Err5105] RFC Errata, Erratum ID 5105, RFC 6991, <https://www.rfc-editor.org/errata/
eid5105>.

Acknowledgments

The following people contributed significantly to the original version of this document, which
was published as [RFC6021]: Andy Bierman, Martin Bjorklund, Balazs Lengyel, David Partain,
and Phil Shafer.

Helpful comments on various versions of this document were provided by the following
individuals: Andy Bierman, Martin Bjorklund, Benoit Claise, Joel M. Halpern, Ladislav Lhotka,
Lars-Johan Liman, and Dan Romascanu.

Author's Address

Jurgen Schéonwélder (EDITOR)
Constructor University
Email: jschoenwaelder@constructor.university

Schénwaélder Standards Track Page 37

https://doi.org/10.1109/IEEESTD.2002.93395
https://www.rfc-editor.org/errata/eid4076
https://www.rfc-editor.org/errata/eid4076
https://www.rfc-editor.org/errata/eid5105
https://www.rfc-editor.org/errata/eid5105
mailto:jschoenwaelder@constructor.university

	RFC 9911
	Common YANG Data Types
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	3. Core YANG Types
	4. Internet Protocol Suite Types
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Author's Address

