
RFC 9911
Common YANG Data Types

Abstract
This document defines a collection of common data types to be used with the YANG data
modeling language. This version of the document adds several new type definitions and
obsoletes RFC 6991.

Stream: Internet Engineering Task Force (IETF)
RFC: 9911
Obsoletes: 6991
Category: Standards Track
Published: December 2025
ISSN: 2070-1721
Author: J. Schönwälder, Ed.

Constructor University

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9911

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Schönwälder Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9911
https://www.rfc-editor.org/rfc/rfc6991
https://www.rfc-editor.org/info/rfc9911
https://trustee.ietf.org/license-info

1. Introduction
YANG is a data modeling language used to model configuration and state data
manipulated by the Network Configuration Protocol (NETCONF) . The YANG language
supports a small set of built-in data types and provides mechanisms to derive other types from
the built-in types.

This document defines a collection of common data types. The definitions are organized into two
YANG modules:

The "ietf-yang-types" module defines generally useful data types such as types for counters
and gauges, types related to date and time, and types for common string values (e.g., UUIDs,
dotted-quad notation, and language tags).

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents
1. Introduction

2. Overview

3. Core YANG Types

4. Internet Protocol Suite Types

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Author's Address

2

3

7

20

32

32

33

33

34

37

37

[RFC7950]
[RFC6241]

•

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 2

The "ietf-inet-types" module defines data types relevant for the Internet protocol suite such
as types related to IP address, types for domain name, host name, URI, and email, and types
for values in common protocol fields (e.g., port numbers).

The initial version of these YANG modules was published as . The first revision of
, published as , added several type definitions to the YANG modules. This

second revision adds further new type definitions and addresses Erratum IDs 4076
and 5105 . Furthermore, the yang-identifier definition has been aligned with YANG 1.1

, and some pattern statements have been improved. For further details, see the
revision statements of the YANG modules in Sections 3 and 4. A brief overview of all types and
when they were introduced can be found in Section 2. Additional type definitions may be added
in the future by submitting proposals to the NETMOD Working Group.

This document uses the YANG terminology defined in .

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

•

[RFC6021]
[RFC6021] [RFC6991]

[Err4076]
[Err5105]

[RFC7950]

Section 3 of [RFC7950]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Overview
Tables 1 and 2 list the types defined in the YANG modules "ietf-yang-types" and "ietf-inet-types".
For each type, the name of the type, the base type it was derived from, and the RFC introducing
the type is listed.

Type Base Type Introduced

counter32 uint32 RFC 6021

zero-based-counter32 uint32 RFC 6021

counter64 uint64 RFC 6021

zero-based-counter64 uint64 RFC 6021

gauge32 uint32 RFC 6021

gauge64 uint64 RFC 6021

object-identifier string RFC 6021

object-identifier-128 object-identifier RFC 6021

date-and-time string RFC 6021

date string RFC 9911

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc7950#section-3

Type Base Type Introduced

date-no-zone string RFC 9911

time string RFC 9911

time-no-zone string RFC 9911

hours32 int32 RFC 9911

minutes32 int32 RFC 9911

seconds32 int32 RFC 9911

centiseconds32 int32 RFC 9911

milliseconds32 int32 RFC 9911

microseconds32 int32 RFC 9911

microseconds64 int64 RFC 9911

nanoseconds32 int32 RFC 9911

nanoseconds64 int64 RFC 9911

timeticks int32 RFC 6021

timestamp timeticks RFC 6021

phys-address string RFC 6021

mac-address string RFC 6021

xpath1.0 string RFC 6021

hex-string string RFC 6991

uuid string RFC 6991

dotted-quad string RFC 6991

language-tag string RFC 9911

yang-identifier string RFC 6991

Table 1: Types Defined in the "ietf-yang-types" Module

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 4

Type Base Type Introduced

ip-version enum RFC 6021

dscp uint8 RFC 6021

ipv6-flow-label uint32 RFC 6021

port-number uint16 RFC 6021

protocol-number uint8 RFC 9911

upper-layer-protocol-number protocol-number RFC 9911

as-number uint32 RFC 6021

ip-address union RFC 6021

ipv4-address string RFC 6021

ipv6-address string RFC 6021

ip-address-no-zone union RFC 6991

ipv4-address-no-zone ipv4-address RFC 6991

ipv6-address-no-zone ipv6-address RFC 6991

ip-address-link-local union RFC 9911

ipv4-address-link-local ipv4-address RFC 9911

ipv6-address-link-local ipv6-address RFC 9911

ip-prefix union RFC 6021

ipv4-prefix string RFC 6021

ipv6-prefix string RFC 6021

ip-address-and-prefix union RFC 9911

ipv4-address-and-prefix string RFC 9911

ipv6-address-and-prefix string RFC 9911

domain-name string RFC 6021

host-name domain-name RFC 9911

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 5

Some types have an equivalent Structure of Management Information Version 2 (SMIv2)
 data type. A YANG data type is equivalent to an SMIv2 data type if the data

types have the same set of values and the semantics of the values are equivalent.

Table 3 lists the types defined in the "ietf-yang-types" YANG module with their corresponding
SMIv2 types, and Table 4 lists the types defined in the "ietf-inet-types" module with their
corresponding SMIv2 types.

Type Base Type Introduced

host union RFC 6021

uri string RFC 6021

email-address string RFC 9911

Table 2: Types Defined in the "ietf-inet-types" Module

[RFC2578] [RFC2579]

YANG type Equivalent SMIv2 type (module)

counter32 Counter32 (SNMPv2-SMI)

zero-based-counter32 ZeroBasedCounter32 (RMON2-MIB)

counter64 Counter64 (SNMPv2-SMI)

zero-based-counter64 ZeroBasedCounter64 (HCNUM-TC)

gauge32 Gauge32 (SNMPv2-SMI)

gauge64 CounterBasedGauge64 (HCNUM-TC)

object-identifier-128 OBJECT IDENTIFIER

centiseconds32 TimeInterval (SNMPv2-TC)

timeticks TimeTicks (SNMPv2-SMI)

timestamp TimeStamp (SNMPv2-TC)

phys-address PhysAddress (SNMPv2-TC)

mac-address MacAddress (SNMPv2-TC)

language-tag LangTag (LANGTAG-TC-MIB)

Table 3: Equivalent SMIv2 Types for the "ietf-yang-types" Module

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 6

YANG type Equivalent SMIv2 type (module)

ip-version InetVersion (INET-ADDRESS-MIB)

dscp Dscp (DIFFSERV-DSCP-TC)

ipv6-flow-label IPv6FlowLabel (IPV6-FLOW-LABEL-MIB)

port-number InetPortNumber (INET-ADDRESS-MIB)

as-number InetAutonomousSystemNumber (INET-ADDRESS-MIB)

uri Uri (URI-TC-MIB)

Table 4: Equivalent SMIv2 Types for the "ietf-inet-types" Module

3. Core YANG Types
The "ietf-yang-types" YANG module references , , ,

, , , , , , , ,
, , , and .

[IEEE-802-2001] [ISO-9834-1] [RFC2578]
[RFC2579] [RFC2856] [RFC3339] [RFC4122] [RFC4502] [RFC5131] [RFC5646] [RFC7950]
[RFC8294] [RFC9557] [XPATH] [XSD-TYPES]

<CODE BEGINS> file "ietf-yang-types@2025-12-01.yang"

module ietf-yang-types {
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
 prefix yang;

 organization
 "IETF Network Modeling (NETMOD) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Juergen Schoenwaelder
 <mailto:jschoenwaelder@constructor.university>";
 description
 "This module contains a collection of generally useful derived
 YANG data types.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 7

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9911;
 see the RFC itself for full legal notices.";

 revision 2025-12-01 {
 description
 "This revision adds the following new data types:
 - yang:date
 - yang:date-no-zone
 - yang:time
 - yang:time-no-zone
 - yang:hours32
 - yang:minutes32
 - yang:seconds32
 - yang:centiseconds32
 - yang:milliseconds32
 - yang:microseconds32
 - yang:microseconds64
 - yang:nanoseconds32
 - yang:nanoseconds64
 - yang:language-tag
 The yang-identifier definition has been aligned with YANG
 1.1, and types representing time support the representation
 of leap seconds. The representation of time zone offsets
 has been aligned with RFC 9557. Several description and
 pattern statements have been improved.";
 reference
 "RFC 9911: Common YANG Data Types";
 }
 revision 2013-07-15 {
 description
 "This revision adds the following new data types:
 - yang:yang-identifier
 - yang:hex-string
 - yang:uuid
 - yang:dotted-quad";
 reference
 "RFC 6991: Common YANG Data Types";
 }
 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

 /*** collection of counter and gauge types ***/

 typedef counter32 {
 type uint32;
 description
 "The counter32 type represents a non-negative integer
 that monotonically increases until it reaches a
 maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 8

 Counters have no defined 'initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system and at other times as specified in the
 description of a schema node using this type. If such
 other times can occur, for example, the instantiation of
 a schema node of type counter32 at times other than
 re-initialization, then a corresponding schema node
 should be defined, with an appropriate type, to indicate
 the last discontinuity.

 The counter32 type should not be used for configuration
 schema nodes. A default statement SHOULD NOT be used in
 combination with the type counter32.

 In the value set and its semantics, this type is equivalent
 to the Counter32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef zero-based-counter32 {
 type counter32;
 default "0";
 description
 "The zero-based-counter32 type represents a counter32
 that has the defined 'initial' value zero.

 A data tree node using this type will be set to zero (0)
 on creation and will thereafter increase monotonically until
 it reaches a maximum value of 2^32-1 (4294967295 decimal),
 when it wraps around and starts increasing again from zero.

 Provided that an application discovers a new data tree node
 using this type within the minimum time to wrap, it can use
 the 'initial' value as a delta. It is important for a
 management station to be aware of this minimum time and the
 actual time between polls, and to discard data if the actual
 time is too long or there is no defined minimum time.

 In the value set and its semantics, this type is equivalent
 to the ZeroBasedCounter32 textual convention of the SMIv2.";
 reference
 "RFC 4502: Remote Network Monitoring Management Information
 Base Version 2";
 }

 typedef counter64 {
 type uint64;
 description
 "The counter64 type represents a non-negative integer
 that monotonically increases until it reaches a
 maximum value of 2^64-1 (18446744073709551615 decimal),
 when it wraps around and starts increasing again from zero.

 Counters have no defined 'initial' value, and thus, a

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 9

 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system and at other times as specified in the
 description of a schema node using this type. If such
 other times can occur, for example, the instantiation of
 a schema node of type counter64 at times other than
 re-initialization, then a corresponding schema node
 should be defined, with an appropriate type, to indicate
 the last discontinuity.

 The counter64 type should not be used for configuration
 schema nodes. A default statement SHOULD NOT be used in
 combination with the type counter64.

 In the value set and its semantics, this type is equivalent
 to the Counter64 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef zero-based-counter64 {
 type counter64;
 default "0";
 description
 "The zero-based-counter64 type represents a counter64 that
 has the defined 'initial' value zero.

 A data tree node using this type will be set to zero (0)
 on creation and will thereafter increase monotonically until
 it reaches a maximum value of 2^64-1 (18446744073709551615
 decimal), when it wraps around and starts increasing again
 from zero.

 Provided that an application discovers a new data tree node
 using this type within the minimum time to wrap, it can use
 the 'initial' value as a delta. It is important for a
 management station to be aware of this minimum time and the
 actual time between polls, and to discard data if the actual
 time is too long or there is no defined minimum time.

 In the value set and its semantics, this type is equivalent
 to the ZeroBasedCounter64 textual convention of the SMIv2.";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 typedef gauge32 {
 type uint32;
 description
 "The gauge32 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 cannot be greater than 2^32-1 (4294967295 decimal), and
 the minimum value cannot be smaller than 0. The value of
 a gauge32 has its maximum value whenever the information

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 10

 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge32 also decreases (increases).

 In the value set and its semantics, this type is equivalent
 to the Gauge32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef gauge64 {
 type uint64;
 description
 "The gauge64 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 cannot be greater than 2^64-1 (18446744073709551615), and
 the minimum value cannot be smaller than 0. The value of
 a gauge64 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge64 also decreases (increases).

 In the value set and its semantics, this type is equivalent
 to the CounterBasedGauge64 SMIv2 textual convention defined
 in RFC 2856";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 /*** collection of identifier-related types ***/

 typedef object-identifier {
 type string {
 pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9][0-9]*))))'
 + '(\.(0|([1-9][0-9]*)))*';
 }
 description
 "The object-identifier type represents administratively
 assigned names in a registration-hierarchical-name tree.

 Values of this type are denoted as a sequence of numerical
 non-negative sub-identifier values. Each sub-identifier
 value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
 are separated by single dots and without any intermediate
 whitespace.

 The ASN.1 standard restricts the value space of the first
 sub-identifier to 0, 1, or 2. Furthermore, the value space
 of the second sub-identifier is restricted to the range

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 11

 0 to 39 if the first sub-identifier is 0 or 1. Finally,
 the ASN.1 standard requires that an object identifier
 has always at least two sub-identifiers. The pattern
 captures these restrictions.

 Although the number of sub-identifiers is not limited,
 module designers should realize that there may be
 implementations that stick with the SMIv2 limit of 128
 sub-identifiers.

 This type is a superset of the SMIv2 OBJECT IDENTIFIER type
 since it is not restricted to 128 sub-identifiers. Hence,
 this type SHOULD NOT be used to represent the SMIv2 OBJECT
 IDENTIFIER type; the object-identifier-128 type SHOULD be
 used instead.";
 reference
 "ISO 9834-1: Information technology -- Open Systems
 Interconnection -- Procedures for the operation of OSI
 Registration Authorities: General procedures and top
 arcs of the International Object Identifier tree";
 }

 typedef object-identifier-128 {
 type object-identifier {
 pattern '[0-9]*(\.[0-9]*){1,127}';
 }
 description
 "This type represents object-identifiers restricted to 128
 sub-identifiers.

 In the value set and its semantics, this type is equivalent
 to the OBJECT IDENTIFIER type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 /*** collection of types related to date and time ***/

 typedef date-and-time {
 type string {
 pattern
 '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'
 + 'T(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?'
 + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
 }
 description
 "The date-and-time type is a profile of the ISO 8601
 standard for representation of dates and times using the
 Gregorian calendar. The profile is defined by the
 date-time production in Section 5.6 of RFC 3339 and the
 update defined in Section 2 of RFC 9557. The value of
 60 for seconds is allowed only in the case of leap seconds.

 The date-and-time type is compatible with the dateTime XML
 schema dateTime type with the following notable exceptions:

 (a) The date-and-time type does not allow negative years.

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 12

 (b) The time-offset Z indicates that the date-and-time
 value is reported in UTC and that the local time zone
 reference point is unknown. The time-offset +00:00
 indicates that the date-and-time value is reported in
 UTC and that the local time reference point is UTC
 (see Section 2 of RFC 9557).

 This type is not equivalent to the DateAndTime textual
 convention of the SMIv2 since RFC 3339 uses a different
 separator between full-date and full-time and provides
 higher resolution of time-secfrac.

 The canonical format for date-and-time values with a known
 time zone uses a numeric time zone offset that is calculated
 using the device's configured known offset to UTC time. A
 change of the device's offset to UTC time will cause
 date-and-time values to change accordingly. Such changes
 might happen periodically in case a server follows
 automatically daylight saving time (DST) time zone offset
 changes. The canonical format for date-and-time values
 reported in UTC with an unknown local time zone offset SHOULD
 use the time-offset Z and MAY use -00:00 for backwards
 compatibility.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 RFC 9557: Date and Time on the Internet: Timestamps
 with Additional Information
 RFC 2579: Textual Conventions for SMIv2
 XSD-TYPES: XML Schema Definition Language (XSD) 1.1
 Part 2: Datatypes";
 }

 typedef date {
 type string {
 pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'
 + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
 }
 description
 "The date type represents a time-interval of the length
 of a day, i.e., 24 hours. It includes an optional time
 zone offset.

 The date type is compatible with the XML schema date
 type with the following notable exceptions:

 (a) The date type does not allow negative years.

 (b) The time-offset Z indicates that the date value is
 reported in UTC and that the local time zone reference
 point is unknown. The time-offset +00:00 indicates that
 the date value is reported in UTC and that the local
 time reference point is UTC (see Section 2 of RFC 9557).

 The canonical format for date values with a known time
 zone uses a numeric time zone offset that is calculated using
 the device's configured known offset to UTC time. A change of
 the device's offset to UTC time will cause date values

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 13

 to change accordingly. Such changes might happen periodically
 in case a server follows automatically daylight saving time
 (DST) time zone offset changes. The canonical format for
 date values reported in UTC with an unknown local time zone
 offset uses the time-offset Z.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 RFC 9557: Date and Time on the Internet: Timestamps
 with Additional Information
 XSD-TYPES: XML Schema Definition Language (XSD) 1.1
 Part 2: Datatypes";
 }

 typedef date-no-zone {
 type date {
 pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])';
 }
 description
 "The date-no-zone type represents a date without the optional
 time zone offset information.";
 }

 typedef time {
 type string {
 pattern
 '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?'
 + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
 }
 description
 "The time type represents an instance of time of zero duration
 that recurs every day. It includes an optional time zone
 offset. The value of 60 for seconds is allowed only in the
 case of leap seconds.

 The time type is compatible with the XML schema time
 type with the following notable exception:

 (a) The time-offset Z indicates that the time value is
 reported in UTC and that the local time zone reference
 point is unknown. The time-offset +00:00 indicates that
 the time value is reported in UTC and that the local
 time reference point is UTC (see Section 2 of RFC 9557).

 The canonical format for time values with a known time
 zone uses a numeric time zone offset that is calculated using
 the device's configured known offset to UTC time. A change of
 the device's offset to UTC time will cause time values
 to change accordingly. Such changes might happen periodically
 in case a server follows automatically daylight saving time
 (DST) time zone offset changes. The canonical format for
 time values reported in UTC with an unknown local time zone
 offset uses the time-offset Z.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 RFC 9557: Date and Time on the Internet: Timestamps
 with Additional Information
 XSD-TYPES: XML Schema Definition Language (XSD) 1.1
 Part 2: Datatypes";

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 14

 }

 typedef time-no-zone {
 type time {
 pattern
 '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?';
 }
 description
 "The time-no-zone type represents a time without the optional
 time zone offset information.";
 }

 typedef hours32 {
 type int32;
 units "hours";
 description
 "A period of time measured in units of hours.

 The maximum time period that can be expressed is in the
 range [-89478485 days 08:00:00 to 89478485 days 07:00:00].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef minutes32 {
 type int32;
 units "minutes";
 description
 "A period of time measured in units of minutes.

 The maximum time period that can be expressed is in the
 range [-1491308 days 2:08:00 to 1491308 days 2:07:00].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef seconds32 {
 type int32;
 units "seconds";
 description
 "A period of time measured in units of seconds.

 The maximum time period that can be expressed is in the
 range [-24855 days 03:14:08 to 24855 days 03:14:07].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef centiseconds32 {
 type int32;
 units "centiseconds";
 description

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 15

 "A period of time measured in units of 10^-2 seconds.

 The maximum time period that can be expressed is in the
 range [-248 days 13:13:56 to 248 days 13:13:56].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef milliseconds32 {
 type int32;
 units "milliseconds";
 description
 "A period of time measured in units of 10^-3 seconds.

 The maximum time period that can be expressed is in the
 range [-24 days 20:31:23 to 24 days 20:31:23].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef microseconds32 {
 type int32;
 units "microseconds";
 description
 "A period of time measured in units of 10^-6 seconds.

 The maximum time period that can be expressed is in the
 range [-00:35:47 to 00:35:47].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef microseconds64 {
 type int64;
 units "microseconds";
 description
 "A period of time measured in units of 10^-6 seconds.

 The maximum time period that can be expressed is in the
 range [-106751991 days 04:00:54 to 106751991 days 04:00:54].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef nanoseconds32 {
 type int32;
 units "nanoseconds";
 description
 "A period of time measured in units of 10^-9 seconds.

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 16

 The maximum time period that can be expressed is in the
 range [-00:00:02 to 00:00:02].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef nanoseconds64 {
 type int64;
 units "nanoseconds";
 description
 "A period of time measured in units of 10^-9 seconds.

 The maximum time period that can be expressed is in the
 range [-106753 days 23:12:44 to 106752 days 0:47:16].

 This type should be range-restricted in situations
 where only non-negative time periods are desirable
 (i.e., range '0..max').";
 }

 typedef timeticks {
 type uint32;
 description
 "The timeticks type represents a non-negative integer that
 represents the time, modulo 2^32 (4294967296 decimal), in
 hundredths of a second between two epochs. When a schema
 node is defined that uses this type, the description of
 the schema node identifies both of the reference epochs.

 In the value set and its semantics, this type is equivalent
 to the TimeTicks type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef timestamp {
 type timeticks;
 description
 "The timestamp type represents the value of an associated
 timeticks schema node instance at which a specific occurrence
 happened. The specific occurrence must be defined in the
 description of any schema node defined using this type. When
 the specific occurrence occurred prior to the last time the
 associated timeticks schema node instance was zero, then the
 timestamp value is zero.

 Note that this requires all timestamp values to be reset to
 zero when the value of the associated timeticks schema node
 instance reaches 497+ days and wraps around to zero.

 The associated timeticks schema node must be specified
 in the description of any schema node using this type.

 In the value set and its semantics, this type is equivalent
 to the TimeStamp textual convention of the SMIv2.";

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 17

 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of generic address types ***/

 typedef phys-address {
 type string {
 pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
 }
 description
 "Represents media- or physical-level addresses represented
 as a sequence of octets, each octet represented by two
 hexadecimal numbers. Octets are separated by colons. The
 canonical representation uses lowercase characters.

 In the value set and its semantics, this type is equivalent
 to the PhysAddress textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 typedef mac-address {
 type string {
 pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
 }
 description
 "The mac-address type represents a 48-bit IEEE 802 Media
 Access Control (MAC) address. The canonical representation
 uses lowercase characters. Note that there are IEEE 802 MAC
 addresses with a different length that this type cannot
 represent. The phys-address type may be used to represent
 physical addresses of varying length.

 In the value set and its semantics, this type is equivalent
 to the MacAddress textual convention of the SMIv2.";
 reference
 "IEEE 802: IEEE Standard for Local and Metropolitan Area
 Networks: Overview and Architecture
 RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of XML-specific types ***/

 typedef xpath1.0 {
 type string;
 description
 "This type represents an XPATH 1.0 expression.

 When a schema node is defined that uses this type, the
 description of the schema node MUST specify the XPath
 context in which the XPath expression is evaluated.";
 reference
 "XPATH: XML Path Language (XPath) Version 1.0";
 }

 /*** collection of string types ***/

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 18

 typedef hex-string {
 type string {
 pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
 }
 description
 "A hexadecimal string with octets represented as hex digits
 separated by colons. The canonical representation uses
 lowercase characters.";
 }

 typedef uuid {
 type string {
 pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
 + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
 }
 description
 "A Universally Unique IDentifier in the string representation
 defined in RFC 4122. The canonical representation uses
 lowercase characters.

 The following is an example of a UUID in string
 representation:
 f81d4fae-7dec-11d0-a765-00a0c91e6bf6.
 ";
 reference
 "RFC 4122: A Universally Unique IDentifier (UUID) URN
 Namespace";
 }

 typedef dotted-quad {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
 }
 description
 "An unsigned 32-bit number expressed in the dotted-quad
 notation, i.e., four octets written as decimal numbers
 and separated with the '.' (full stop) character.";
 }

 typedef language-tag {
 type string;
 description
 "A language tag according to RFC 5646 (BCP 47). The
 canonical representation uses lowercase characters.

 Values of this type must be well-formed language tags,
 in conformance with the definition of well-formed tags
 in BCP 47. Implementations MAY further limit the values
 they accept to those permitted by a 'validating'
 processor, as defined in BCP 47.

 The canonical representation of values of this type is
 aligned with the SMIv2 LangTag textual convention for
 language tags fitting the length constraints imposed
 by the LangTag textual convention.";
 reference

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 19

 "RFC 5646: Tags for Identifying Languages
 RFC 5131: A MIB Textual Convention for Language Tags";
 }

 /*** collection of YANG-specific types ***/

 typedef yang-identifier {
 type string {
 length "1..max";
 pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
 }
 description
 "A YANG identifier string as defined by the 'identifier'
 rule in Section 14 of RFC 7950. An identifier must
 start with an alphabetic character or an underscore
 followed by an arbitrary sequence of alphabetic or
 numeric characters, underscores, hyphens, or dots.

 This definition conforms to YANG 1.1 defined in RFC
 7950. An earlier version of this definition excluded
 all identifiers starting with any possible combination
 of the lowercase or uppercase character sequence 'xml',
 as required by YANG 1 defined in RFC 6020. If this type
 is used in a YANG 1 context, then this restriction still
 applies.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language
 RFC 6020: YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)";
 }
}

<CODE ENDS>

4. Internet Protocol Suite Types
The "ietf-inet-types" YANG module references , , , ,

, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, and .

[RFC0768] [RFC0791] [RFC0952] [RFC1034]
[RFC1123] [RFC1930] [RFC2317] [RFC2474] [RFC2780] [RFC2782] [RFC3289] [RFC3305]
[RFC3595] [RFC3927] [RFC3986] [RFC4001] [RFC4007] [RFC4271] [RFC4291] [RFC4340]
[RFC4592] [RFC5017] [RFC5322] [RFC5890] [RFC5952] [RFC6793] [RFC8200] [RFC9260]
[RFC9293] [RFC9499]

<CODE BEGINS> file "ietf-inet-types@2025-12-01.yang"

module ietf-inet-types {
 namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
 prefix inet;

 organization
 "IETF Network Modeling (NETMOD) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 20

 Editor: Juergen Schoenwaelder
 <mailto:jschoenwaelder@constructor.university>";
 description
 "This module contains a collection of generally useful derived
 YANG data types for Internet addresses and related things.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9911;
 see the RFC itself for full legal notices.";

 revision 2025-12-01 {
 description
 "This revision adds the following new data types:
 - inet:ip-address-and-prefix
 - inet:ipv4-address-and-prefix
 - inet:ipv6-address-and-prefix
 - inet:protocol-number
 - inet:upper-layer-protocol-number
 - inet:host-name
 - inet:email-address
 - inet:ip-address-link-local
 - inet:ipv4-address-link-local
 - inet:ipv6-address-link-local
 The inet:host union was changed to use inet:host-name instead
 of inet:domain-name. Several pattern statements have been
 improved.";
 reference
 "RFC 9911: Common YANG Data Types";
 }
 revision 2013-07-15 {
 description
 "This revision adds the following new data types:
 - inet:ip-address-no-zone
 - inet:ipv4-address-no-zone
 - inet:ipv6-address-no-zone";
 reference
 "RFC 6991: Common YANG Data Types";
 }
 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 21

 }

 /*** collection of types related to protocol fields ***/

 typedef ip-version {
 type enumeration {
 enum unknown {
 value 0;
 description
 "An unknown or unspecified version of the Internet
 protocol.";
 }
 enum ipv4 {
 value 1;
 description
 "The IPv4 protocol as defined in RFC 791.";
 }
 enum ipv6 {
 value 2;
 description
 "The IPv6 protocol as defined in RFC 8200.";
 }
 }
 description
 "This value represents the version of the IP protocol.

 In the value set and its semantics, this type is equivalent
 to the InetVersion textual convention of the SMIv2.";
 reference
 "RFC 791: Internet Protocol
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 typedef dscp {
 type uint8 {
 range "0..63";
 }
 description
 "The dscp type represents a Differentiated Services Code Point
 that may be used for marking packets in a traffic stream.

 In the value set and its semantics, this type is equivalent
 to the Dscp textual convention of the SMIv2.";
 reference
 "RFC 3289: Management Information Base for the Differentiated
 Services Architecture
 RFC 2474: Definition of the Differentiated Services Field
 (DS Field) in the IPv4 and IPv6 Headers
 RFC 2780: IANA Allocation Guidelines For Values In
 the Internet Protocol and Related Headers";
 }

 typedef ipv6-flow-label {
 type uint32 {
 range "0..1048575";
 }
 description

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 22

 "The ipv6-flow-label type represents the flow identifier or
 Flow Label in an IPv6 packet header that may be used to
 discriminate traffic flows.

 In the value set and its semantics, this type is equivalent
 to the IPv6FlowLabel textual convention of the SMIv2.";
 reference
 "RFC 3595: Textual Conventions for IPv6 Flow Label
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
 }

 typedef port-number {
 type uint16 {
 range "0..65535";
 }
 description
 "The port-number type represents a 16-bit port number of an
 Internet transport-layer protocol such as UDP, TCP, DCCP, or
 SCTP.

 Port numbers are assigned by IANA. The current list of
 all assignments is available from <https://www.iana.org/>.

 Note that the port number value zero is reserved by IANA. In
 situations where the value zero does not make sense, it can
 be excluded by subtyping the port-number type.

 In the value set and its semantics, this type is equivalent
 to the InetPortNumber textual convention of the SMIv2.";
 reference
 "RFC 768: User Datagram Protocol
 RFC 9293: Transmission Control Protocol (TCP)
 RFC 9260: Stream Control Transmission Protocol
 RFC 4340: Datagram Congestion Control Protocol (DCCP)
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 typedef protocol-number {
 type uint8;
 description
 "The protocol-number type represents an 8-bit Internet
 protocol number, carried in the 'protocol' field of the
 IPv4 header or in the 'next header' field of the IPv6
 header.

 Protocol numbers are assigned by IANA. The current list of
 all assignments is available from <https://www.iana.org/>.";
 reference
 "RFC 791: Internet Protocol
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
 }

 typedef upper-layer-protocol-number {
 type protocol-number;
 description
 "The upper-layer-protocol-number represents the upper-layer
 protocol number carried in an IP packet. For IPv6 packets
 with extension headers, this is the protocol number carried

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 23

 in the last 'next header' field of the chain of IPv6 extension
 headers.";
 reference
 "RFC 791: Internet Protocol
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
 }

 /*** collection of types related to autonomous systems ***/

 typedef as-number {
 type uint32;
 description
 "The as-number type represents autonomous system numbers
 that identify an Autonomous System (AS). An AS is a set
 of routers under a single technical administration, using
 an interior gateway protocol and common metrics to route
 packets within the AS, and using an exterior gateway
 protocol to route packets to other ASes. IANA maintains
 the AS number space and has delegated large parts to the
 regional registries.

 Autonomous system numbers were originally limited to 16
 bits. BGP extensions have enlarged the autonomous system
 number space to 32 bits. This type therefore uses an uint32
 base type without a range restriction in order to support
 a larger autonomous system number space.

 In the value set and its semantics, this type is equivalent
 to the InetAutonomousSystemNumber textual convention of
 the SMIv2.";
 reference
 "RFC 1930: Guidelines for creation, selection, and registration
 of an Autonomous System (AS)
 RFC 4271: A Border Gateway Protocol 4 (BGP-4)
 RFC 4001: Textual Conventions for Internet Network Addresses
 RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
 Number Space";
 }

 /*** collection of types related to IP addresses and hostnames ***/

 typedef ip-address {
 type union {
 type ipv4-address;
 type ipv6-address;
 }
 description
 "The ip-address type represents an IP address and is IP
 version neutral. The format of the textual representation
 implies the IP version. This type supports scoped addresses
 by allowing zone identifiers in the address format.";
 reference
 "RFC 4007: IPv6 Scoped Address Architecture";
 }

 typedef ipv4-address {
 type string {
 pattern

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 24

 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '(%.+)?';
 }
 description
 "The ipv4-address type represents an IPv4 address in
 dotted-quad notation. The IPv4 address may include a zone
 index, separated by a % sign. If a system uses zone names
 that are not represented in UTF-8, then an implementation
 needs to use some mechanism to transform the local name
 into UTF-8. The definition of such a mechanism is outside
 the scope of this document.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.

 The canonical format for the zone index is the numerical
 format";
 }

 typedef ipv6-address {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + '(%[A-Za-z0-9][A-Za-z0-9\-\._~/]*)?';
 pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + '(%.+)?';
 }
 description
 "The ipv6-address type represents an IPv6 address in full,
 mixed, shortened, and shortened-mixed notation. The IPv6
 address may include a zone index, separated by a % sign.
 If a system uses zone names that are not represented in
 UTF-8, then an implementation needs to use some mechanism
 to transform the local name into UTF-8. The definition of
 such a mechanism is outside the scope of this document.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.

 The canonical format of IPv6 addresses uses the textual
 representation defined in Section 4 of RFC 5952. The
 canonical format for the zone index is the numerical
 format as described in Section 11.2 of RFC 4007.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text
 Representation";

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 25

 }

 typedef ip-address-no-zone {
 type union {
 type ipv4-address-no-zone;
 type ipv6-address-no-zone;
 }
 description
 "The ip-address-no-zone type represents an IP address and is
 IP version neutral. The format of the textual representation
 implies the IP version. This type does not support scoped
 addresses since it does not allow zone identifiers in the
 address format.";
 reference
 "RFC 4007: IPv6 Scoped Address Architecture";
 }

 typedef ipv4-address-no-zone {
 type ipv4-address {
 pattern '[0-9\.]*';
 }
 description
 "An IPv4 address without a zone index. This type, derived
 from the type ipv4-address, may be used in situations where
 the zone is known from the context and no zone index is
 needed.";
 }

 typedef ipv6-address-no-zone {
 type ipv6-address {
 pattern '[0-9a-fA-F:\.]*';
 }
 description
 "An IPv6 address without a zone index. This type, derived
 from the type ipv6-address, may be used in situations where
 the zone is known from the context and no zone index is
 needed.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 typedef ip-address-link-local {
 type union {
 type ipv4-address-link-local;
 type ipv6-address-link-local;
 }
 description
 "The ip-address-link-local type represents a link-local IP
 address and is IP version neutral. The format of the textual
 representation implies the IP version.";
 }

 typedef ipv4-address-link-local {
 type ipv4-address {
 pattern '169\.254\..*';

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 26

 }
 description
 "The ipv4-address-link-local type represents a link-local IPv4
 address in the prefix 169.254.0.0/16 as defined in Section 2.1
 of RFC 3927.";
 reference
 "RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses";
 }

 typedef ipv6-address-link-local {
 type ipv6-address {
 pattern '[fF][eE]80:.*';
 }
 description
 "The ipv6-address-link-local type represents a link-local IPv6
 address in the prefix fe80::/10 as defined in Section 2.5.6 of
 RFC 4291.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture";
 }

 typedef ip-prefix {
 type union {
 type ipv4-prefix;
 type ipv6-prefix;
 }
 description
 "The ip-prefix type represents an IP prefix and is IP
 version neutral. The format of the textual representations
 implies the IP version.";
 }

 typedef ipv4-prefix {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
 }
 description
 "The ipv4-prefix type represents an IPv4 prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The canonical format of an IPv4 prefix has all bits of
 the IPv4 address set to zero that are not part of the
 IPv4 prefix.

 The definition of ipv4-prefix does not require that bits
 that are not part of the prefix be set to zero. However,
 implementations have to return values in canonical format,
 which requires non-prefix bits to be set to zero. This means
 that 192.0.2.1/24 must be accepted as a valid value, but it
 will be converted into the canonical format 192.0.2.0/24.";

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 27

 }

 typedef ipv6-prefix {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
 pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + '(/.+)';
 }
 description
 "The ipv6-prefix type represents an IPv6 prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 128.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The canonical format of an IPv6 prefix has all bits of
 the IPv6 address set to zero that are not part of the
 IPv6 prefix. Furthermore, the IPv6 address is represented
 as defined in Section 4 of RFC 5952.

 The definition of ipv6-prefix does not require that bits
 that are not part of the prefix be set to zero. However,
 implementations have to return values in canonical format,
 which requires non-prefix bits to be set to zero. This means
 that 2001:db8::1/64 must be accepted as a valid value, but it
 will be converted into the canonical format 2001:db8::/64.";
 reference
 "RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 typedef ip-address-and-prefix {
 type union {
 type ipv4-address-and-prefix;
 type ipv6-address-and-prefix;
 }
 description
 "The ip-address-and-prefix type represents an IP address and
 prefix and is IP version neutral. The format of the textual
 representations implies the IP version.";
 }

 typedef ipv4-address-and-prefix {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
 }
 description
 "The ipv4-address-and-prefix type represents an IPv4

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 28

 address and an associated IPv4 prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.";
 }

 typedef ipv6-address-and-prefix {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
 pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + '(/.+)';
 }
 description
 "The ipv6-address-and-prefix type represents an IPv6
 address and an associated IPv6 prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 128.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The canonical format requires that the IPv6 address is
 represented as defined in Section 4 of RFC 5952.";
 reference
 "RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 /*** collection of domain name and URI types ***/

 typedef domain-name {
 type string {
 length "1..253";
 pattern '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
 + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
 + '|\.';
 }
 description
 "The domain-name type represents a DNS domain name. The
 name SHOULD be fully qualified whenever possible. This
 type does not support wildcards (see RFC 4592) or
 classless in-addr.arpa delegations (see RFC 2317).

 Internet domain names are only loosely specified. Section
 3.5 of RFC 1034 recommends a syntax (modified in Section
 2.1 of RFC 1123). The pattern above is intended to allow
 for current practice in domain name use and some possible
 future expansion. Note that Internet host names have a
 stricter syntax (described in RFC 952) than the DNS

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 29

 recommendations in RFCs 1034 and 1123. Schema nodes
 representing host names should use the host-name type
 instead of the domain-type.

 The encoding of DNS names in the DNS protocol is limited
 to 255 characters. Since the encoding consists of labels
 prefixed by a length bytes and there is a trailing NULL
 byte, only 253 characters can appear in the textual dotted
 notation.

 The description clause of schema nodes using the domain-name
 type MUST describe when and how these names are resolved to
 IP addresses. Note that the resolution of a domain-name value
 may require to query multiple DNS records (e.g., A for IPv4
 and AAAA for IPv6). The order of the resolution process and
 which DNS record takes precedence can either be defined
 explicitly or depend on the configuration of the
 resolver.

 Domain-name values use the US-ASCII encoding. Their canonical
 format uses lowercase US-ASCII characters. Internationalized
 domain names MUST be A-labels as per RFC 5890.";
 reference
 "RFC 952: DoD Internet Host Table Specification
 RFC 1034: Domain Names - Concepts and Facilities
 RFC 1123: Requirements for Internet Hosts -- Application
 and Support
 RFC 2317: Classless IN-ADDR.ARPA delegation
 RFC 2782: A DNS RR for specifying the location of services
 (DNS SRV)
 RFC 4592: The Role of Wildcards in the Domain Name System
 RFC 5890: Internationalized Domain Names in Applications
 (IDNA): Definitions and Document Framework
 RFC 9499: DNS Terminology";
 }

 typedef host-name {
 type domain-name {
 length "2..max";
 pattern '[a-zA-Z0-9\-\.]+';
 }
 description
 "The host-name type represents (fully qualified) host names.
 Host names must be at least two characters long (see RFC 952),
 and they are restricted to labels consisting of letters,
 digits, and hyphens separated by dots (see RFCs 1123 and
 952).";
 reference
 "RFC 952: DoD Internet Host Table Specification
 RFC 1123: Requirements for Internet Hosts -- Application
 and Support";
 }

 typedef host {
 type union {
 type ip-address;
 type host-name;
 }

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 30

 description
 "The host type represents either an IP address or a (fully
 qualified) host name.";
 }

 typedef uri {
 type string {
 pattern '[a-z][a-z0-9+.-]*:.*';
 }
 description
 "The uri type represents a Uniform Resource Identifier
 (URI) as defined by the rule 'URI' in RFC 3986.

 Objects using the uri type MUST be in US-ASCII encoding
 and MUST be normalized as described in Sections 6.2.1,
 6.2.2.1, and 6.2.2.2 of RFC 3986. Characters that can be
 represented without using percent-encoding are represented
 as characters (without percent-encoding), and all
 case-insensitive characters are set to lowercase except
 for hexadecimal digits within a percent-encoded triplet,
 which are normalized to uppercase as described in
 Section 6.2.2.1 of RFC 3986.

 The purpose of this normalization is to help provide
 unique URIs. Note that this normalization is not
 sufficient to provide uniqueness. Two URIs that are
 textually distinct after this normalization may still be
 equivalent.

 Objects using the uri type may restrict the schemes that
 they permit. For example, 'data:' and 'urn:' schemes
 might not be appropriate.

 A zero-length URI is not a valid URI. This can be used to
 express 'URI absent' where required.

 In the value set and its semantics, this type is equivalent
 to the Uri SMIv2 textual convention defined in RFC 5017.";
 reference
 "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
 RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
 Group: Uniform Resource Identifiers (URIs), URLs,
 and Uniform Resource Names (URNs): Clarifications
 and Recommendations
 RFC 5017: MIB Textual Conventions for Uniform Resource
 Identifiers (URIs)";
 }

 typedef email-address {
 type string {
 pattern '.+@.+';
 }
 description
 "The email-address type represents an internationalized
 email address.

 The email address format is defined by the addr-spec
 ABNF rule in Section 3.4.1 of RFC 5322. This format has

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 31

Name:
Namespace:
Prefix:
Reference:

Name:
Namespace:
Prefix:
Reference:

5. IANA Considerations
This document reuses the URIs for "ietf-yang-types" and "ietf-inet-types" in the "IETF XML
Registry" .

Per this document, IANA has updated the "YANG Module Names" registry to reference this RFC
instead of for the "ietf-yang-types" and "ietf-inet-types" modules. Following the format
in , these registrations have been made.

ietf-yang-types
urn:ietf:params:xml:ns:yang:ietf-yang-types

yang
RFC 9911

ietf-inet-types
urn:ietf:params:xml:ns:yang:ietf-inet-types

inet
RFC 9911

6. Security Considerations
This document defines common data types using the YANG data modeling language. The
definitions themselves have no security impact on the Internet, but the usage of these definitions
in concrete YANG modules might have. The security considerations spelled out in the YANG
specification apply for this document as well.

 been extended by RFC 6532 to support internationalized
 email addresses. Implementations MUST support the
 internationalization extensions of RFC 6532. Support
 of the obsolete obs-local-part, obs-domain, and
 obs-qtext parts of RFC 5322 is not required.

 The domain part may use both A-labels and U-labels
 (see RFC 5890). The canonical format of the domain part
 uses lowercase characters and U-labels (RFC 5890) where
 applicable.";
 reference
 "RFC 5322: Internet Message Format
 RFC 5890: Internationalized Domain Names in Applications
 (IDNA): Definitions and Document Framework
 RFC 6531: SMTP Extension for Internationalized Email";
 }
}

<CODE ENDS>

[RFC3688]

[RFC6991]
[RFC6020]

[RFC7950]

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 32

[RFC2119]

[RFC3339]

[RFC3688]

[RFC3986]

[RFC4007]

[RFC4122]

[RFC4291]

[RFC6020]

[RFC7950]

[RFC8174]

[RFC8294]

[RFC9499]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

 and , ,
, , July 2002,

.

, , , , ,
January 2004, .

, , and ,
, , , , January 2005,

.

, , , , and ,
, , , March 2005,

.

, , and ,
, , , July 2005,

.

 and , , ,
, February 2006, .

,
, , , October

2010, .

, , ,
, August 2016, .

, ,
, , , May 2017,

.

, , , , and ,
, , , December 2017,

.

 and , , , ,
, March 2024, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier
(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Deering, S. Haberman, B. Jinmei, T. Nordmark, E. B. Zill "IPv6 Scoped
Address Architecture" RFC 4007 DOI 10.17487/RFC4007 <https://
www.rfc-editor.org/info/rfc4007>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN
Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-
editor.org/info/rfc4122>

Hinden, R. S. Deering "IP Version 6 Addressing Architecture" RFC 4291 DOI
10.17487/RFC4291 <https://www.rfc-editor.org/info/rfc4291>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Liu, X. Qu, Y. Lindem, A. Hopps, C. L. Berger "Common YANG Data Types
for the Routing Area" RFC 8294 DOI 10.17487/RFC8294 <https://
www.rfc-editor.org/info/rfc8294>

Hoffman, P. K. Fujiwara "DNS Terminology" BCP 219 RFC 9499 DOI
10.17487/RFC9499 <https://www.rfc-editor.org/info/rfc9499>

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 33

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4007
https://www.rfc-editor.org/info/rfc4007
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc9499

[RFC9557]

[XPATH]

[XSD-TYPES]

[RFC0768]

[RFC0791]

[RFC0952]

[RFC1034]

[RFC1123]

[RFC1930]

[RFC2317]

[RFC2474]

[RFC2578]

[RFC2579]

 and ,
, , , April 2024,

.

 and , ,
, 16 November 1999, .

, , , , and
,

, , 5 April 2012,
.

7.2. Informative References

, , , , ,
August 1980, .

, , , , , September
1981, .

, , and , ,
, , October 1985,
.

, , , ,
, November 1987, .

, ,
, , , October 1989,

.

 and ,
, , , , March

1996, .

, , and , ,
, , , March 1998,

.

, , , and ,
, ,

, December 1998, .

, , and ,
, , ,

, April 1999, .

, , and ,
, , , , April 1999,

.

Sharma, U. C. Bormann "Date and Time on the Internet: Timestamps with
Additional Information" RFC 9557 DOI 10.17487/RFC9557 <https://
www.rfc-editor.org/info/rfc9557>

Clark, J., Ed. S. DeRose, Ed. "XML Path Language (XPath) Version 1.0" W3C
Recommendation <http://www.w3.org/TR/xpath-10>

Peterson, D., Ed. Gao, S., Ed. Malhotra, A., Ed. Sperberg-McQueen, C., Ed. H.
S. Thompson, Ed. "W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes" W3C Recommendation <https://www.w3.org/TR/
xmlschema11-2/>

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Postel, J. "Internet Protocol" STD 5 RFC 791 DOI 10.17487/RFC0791
<https://www.rfc-editor.org/info/rfc791>

Harrenstien, K. Stahl, M. E. Feinler "DoD Internet host table specification"
RFC 952 DOI 10.17487/RFC0952 <https://www.rfc-editor.org/info/
rfc952>

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI
10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Braden, R., Ed. "Requirements for Internet Hosts - Application and Support"
STD 3 RFC 1123 DOI 10.17487/RFC1123 <https://www.rfc-
editor.org/info/rfc1123>

Hawkinson, J. T. Bates "Guidelines for creation, selection, and registration
of an Autonomous System (AS)" BCP 6 RFC 1930 DOI 10.17487/RFC1930

<https://www.rfc-editor.org/info/rfc1930>

Eidnes, H. de Groot, G. P. Vixie "Classless IN-ADDR.ARPA delegation" BCP
20 RFC 2317 DOI 10.17487/RFC2317 <https://www.rfc-editor.org/
info/rfc2317>

Nichols, K. Blake, S. Baker, F. D. Black "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers" RFC 2474 DOI 10.17487/
RFC2474 <https://www.rfc-editor.org/info/rfc2474>

McCloghrie, K., Ed. Perkins, D., Ed. J. Schoenwaelder, Ed. "Structure of
Management Information Version 2 (SMIv2)" STD 58 RFC 2578 DOI 10.17487/
RFC2578 <https://www.rfc-editor.org/info/rfc2578>

McCloghrie, K., Ed. Perkins, D., Ed. J. Schoenwaelder, Ed. "Textual
Conventions for SMIv2" STD 58 RFC 2579 DOI 10.17487/RFC2579
<https://www.rfc-editor.org/info/rfc2579>

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 34

https://www.rfc-editor.org/info/rfc9557
https://www.rfc-editor.org/info/rfc9557
http://www.w3.org/TR/xpath-10
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc952
https://www.rfc-editor.org/info/rfc952
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1930
https://www.rfc-editor.org/info/rfc2317
https://www.rfc-editor.org/info/rfc2317
https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc2578
https://www.rfc-editor.org/info/rfc2579

[RFC2780]

[RFC2782]

[RFC2856]

[RFC3289]

[RFC3305]

[RFC3595]

[RFC3927]

[RFC4001]

[RFC4271]

[RFC4340]

[RFC4502]

[RFC4592]

 and ,
, , ,

, March 2000, .

, , and ,
, , , February 2000,

.

, , and ,
, , , June

2000, .

, , and ,
, , , May

2002, .

 and ,

,
, , August 2002,

.

, , ,
, September 2003, .

, , and ,
, , , May 2005,

.

, , , and ,
, , ,

February 2005, .

, , and ,
, , , January 2006,

.

, , and ,
, , , March 2006,

.

,
, , , May 2006,

.

, , ,
, July 2006, .

Bradner, S. V. Paxson "IANA Allocation Guidelines For Values In the
Internet Protocol and Related Headers" BCP 37 RFC 2780 DOI 10.17487/
RFC2780 <https://www.rfc-editor.org/info/rfc2780>

Gulbrandsen, A. Vixie, P. L. Esibov "A DNS RR for specifying the location of
services (DNS SRV)" RFC 2782 DOI 10.17487/RFC2782 <https://
www.rfc-editor.org/info/rfc2782>

Bierman, A. McCloghrie, K. R. Presuhn "Textual Conventions for
Additional High Capacity Data Types" RFC 2856 DOI 10.17487/RFC2856

<https://www.rfc-editor.org/info/rfc2856>

Baker, F. Chan, K. A. Smith "Management Information Base for the
Differentiated Services Architecture" RFC 3289 DOI 10.17487/RFC3289

<https://www.rfc-editor.org/info/rfc3289>

Mealling, M., Ed. R. Denenberg, Ed. "Report from the Joint W3C/IETF URI
Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and
Uniform Resource Names (URNs): Clarifications and Recommendations" RFC
3305 DOI 10.17487/RFC3305 <https://www.rfc-editor.org/info/
rfc3305>

Wijnen, B. "Textual Conventions for IPv6 Flow Label" RFC 3595 DOI 10.17487/
RFC3595 <https://www.rfc-editor.org/info/rfc3595>

Cheshire, S. Aboba, B. E. Guttman "Dynamic Configuration of IPv4 Link-
Local Addresses" RFC 3927 DOI 10.17487/RFC3927 <https://www.rfc-
editor.org/info/rfc3927>

Daniele, M. Haberman, B. Routhier, S. J. Schoenwaelder "Textual
Conventions for Internet Network Addresses" RFC 4001 DOI 10.17487/RFC4001

<https://www.rfc-editor.org/info/rfc4001>

Rekhter, Y., Ed. Li, T., Ed. S. Hares, Ed. "A Border Gateway Protocol 4
(BGP-4)" RFC 4271 DOI 10.17487/RFC4271 <https://www.rfc-
editor.org/info/rfc4271>

Kohler, E. Handley, M. S. Floyd "Datagram Congestion Control Protocol
(DCCP)" RFC 4340 DOI 10.17487/RFC4340 <https://www.rfc-
editor.org/info/rfc4340>

Waldbusser, S. "Remote Network Monitoring Management Information Base
Version 2" RFC 4502 DOI 10.17487/RFC4502 <https://www.rfc-
editor.org/info/rfc4502>

Lewis, E. "The Role of Wildcards in the Domain Name System" RFC 4592 DOI
10.17487/RFC4592 <https://www.rfc-editor.org/info/rfc4592>

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 35

https://www.rfc-editor.org/info/rfc2780
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2856
https://www.rfc-editor.org/info/rfc3289
https://www.rfc-editor.org/info/rfc3305
https://www.rfc-editor.org/info/rfc3305
https://www.rfc-editor.org/info/rfc3595
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc4001
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4502
https://www.rfc-editor.org/info/rfc4502
https://www.rfc-editor.org/info/rfc4592

[RFC5017]

[RFC5131]

[RFC5322]

[RFC5646]

[RFC5890]

[RFC5952]

[RFC6021]

[RFC6241]

[RFC6793]

[RFC6991]

[RFC8200]

[RFC9260]

[RFC9293]

[ISO-9834-1]

,
, , , September 2007,

.

, , ,
, December 2007, .

, , , ,
October 2008, .

 and , , ,
, , September 2009,

.

,
, , ,

August 2010, .

 and ,
, , , August 2010,

.

, , ,
, October 2010, .

, , , and ,
, , ,

June 2011, .

 and ,
, , , December 2012,

.

, , ,
, July 2013, .

 and , ,
, , , July 2017,

.

, , and , ,
, , June 2022,
.

, , , ,
, August 2022, .

,

, , 2008,
.

McWalter, D., Ed. "MIB Textual Conventions for Uniform Resource Identifiers
(URIs)" RFC 5017 DOI 10.17487/RFC5017 <https://www.rfc-
editor.org/info/rfc5017>

McWalter, D., Ed. "A MIB Textual Convention for Language Tags" RFC 5131 DOI
10.17487/RFC5131 <https://www.rfc-editor.org/info/rfc5131>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322
<https://www.rfc-editor.org/info/rfc5322>

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC
5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/
rfc5646>

Klensin, J. "Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework" RFC 5890 DOI 10.17487/RFC5890

<https://www.rfc-editor.org/info/rfc5890>

Kawamura, S. M. Kawashima "A Recommendation for IPv6 Address Text
Representation" RFC 5952 DOI 10.17487/RFC5952 <https://
www.rfc-editor.org/info/rfc5952>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6021 DOI 10.17487/
RFC6021 <https://www.rfc-editor.org/info/rfc6021>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Vohra, Q. E. Chen "BGP Support for Four-Octet Autonomous System (AS)
Number Space" RFC 6793 DOI 10.17487/RFC6793 <https://
www.rfc-editor.org/info/rfc6793>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

Stewart, R. Tüxen, M. K. Nielsen "Stream Control Transmission Protocol"
RFC 9260 DOI 10.17487/RFC9260 <https://www.rfc-editor.org/info/
rfc9260>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI
10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

ISO/IEC "Information technology -- Open Systems Interconnection -- Procedures
for the operation of OSI Registration Authorities: General procedures and top
arcs of the International Object Identifier tree" ISO/IEC 9834-1:2008
<https://www.iso.org/standard/51424.html>

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 36

https://www.rfc-editor.org/info/rfc5017
https://www.rfc-editor.org/info/rfc5017
https://www.rfc-editor.org/info/rfc5131
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc6021
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6793
https://www.rfc-editor.org/info/rfc6793
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9293
https://www.iso.org/standard/51424.html

[IEEE-802-2001]

[Err4076]

[Err5105]

,
, , ,

February 2002, .

, , ,
.

, , ,
.

Acknowledgments
The following people contributed significantly to the original version of this document, which
was published as : , , , ,
and .

Helpful comments on various versions of this document were provided by the following
individuals: , , , , ,

, and .

IEEE "IEEE Standard for Local and Metropolitan Area Networks: Overview
and Architecture" IEEE Std 802-2001 DOI 10.1109/IEEESTD.2002.93395

<https://doi.org/10.1109/IEEESTD.2002.93395>

RFC Errata Erratum ID 4076 RFC 6991 <https://www.rfc-editor.org/errata/
eid4076>

RFC Errata Erratum ID 5105 RFC 6991 <https://www.rfc-editor.org/errata/
eid5105>

[RFC6021] Andy Bierman Martin Björklund Balazs Lengyel David Partain
Phil Shafer

Andy Bierman Martin Björklund Benoît Claise Joel M. Halpern Ladislav Lhotka
Lars-Johan Liman Dan Romascanu

Author's Address
Jürgen Schönwälder ()editor
Constructor University

jschoenwaelder@constructor.universityEmail:

RFC 9911 Common YANG Data Types December 2025

Schönwälder Standards Track Page 37

https://doi.org/10.1109/IEEESTD.2002.93395
https://www.rfc-editor.org/errata/eid4076
https://www.rfc-editor.org/errata/eid4076
https://www.rfc-editor.org/errata/eid5105
https://www.rfc-editor.org/errata/eid5105
mailto:jschoenwaelder@constructor.university

	RFC 9911
	Common YANG Data Types
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	3. Core YANG Types
	4. Internet Protocol Suite Types
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Author's Address

