I nt ernet Engi neering Task Force (I ETF) R Fielding, Ed.

Request for Comments: 7234 Adobe
bsol etes: 2616 M Nottingham Ed.
Cat egory: Standards Track Akanai
| SSN: 2070-1721 J. Reschke, Ed.
greenbyt es
June 2014

Hypertext Transfer Protocol (HTTP/1.1): Caching
Abst r act

The Hypertext Transfer Protocol (HTTP) is a stateless application-

| evel protocol for distributed, collaborative, hypertext information
systens. This docunent defines HITP caches and the associ ated header
fields that control cache behavior or indicate cacheabl e response
nessages.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc7234.

Fielding, et al. St andards Track [Page 1]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Tabl e of Contents

1. Introducti ON ... 4
1.1. Conformance and Error Handling 4
1.2, Syntax Notation 4

1.2.1. Delta Seconds i 5

2. Overview of Cache Qperation i, 5

3. Storing Responses in Caches i, 6
3.1. Storing Inconplete RESPONSESttt 7
3.2. Storing Responses to Authenticated Requests 7
3.3. Conmbining Partial Content 0. . 8

4. Constructing Responses fromCaches 8
4.1. Calculating Secondary Keys with Vary 9
4.2, Freshness 11

4.2.1. Calculating Freshness Lifetinme 12
4.2.2. Calculating Heuristic Freshness 13
4.2.3. Calculating Age 13
4.2.4. Serving Stale Responses 15
4.3, Validation 16
4.3.1. Sending a Validation Request 16
4.3.2. Handling a Received Validation Request 16

Fielding, et al. St andards Track [Page 2]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014
4.3.3. Handling a Validation Response 18

4.3.4. Freshening Stored Responses upon Validation 18

4.3.5. Freshening Responses via HEAD 19

4.4, Invalidation 20

5. Header Field Definitions 21
D L. A . 21
5.2. Cache-Control 21
5.2.1. Request Cache-Control Directives 22

5.2.2. Response Cache-Control Directives 24

5.2.3. Cache Control Extensions 0.0 ... 27

B 3. EXPI TS o 28

D 4, PragmB ... 29

B G, VNI NG . 29
5.5.1. Warning: 110 - "Response is Stale" 31

5.5.2. Warning: 111 - "Revalidation Failed" 31

5.5.3. Warning: 112 - "Disconnected Operation" 31

5.5.4. Warning: 113 - "Heuristic Expiration” 31

5.5.5. Warning: 199 - "M scellaneous Warning" 32

5.5.6. Warning: 214 - "Transformation Applied" 32

5.5.7. Warning: 299 - "M scell aneous Persistent Warning" ..32

6. History LiSts ... 32
7. TANA Considerati ONS e 32
7.1. Cache Directive RegiStry 32
7.1.1. Proceduret 32

7.1.2. Considerations for New Cache Control Directives33

7.1.3. Registrati ons 33

7.2. Warn Code Regi Sty 34
7.2.1. Procedure 34

7.2.2. RegistratiOns e 34

7.3. Header Field Registration 34

8. Security Considerati oOnst e 35
9. ACKNOW edgImENt So 36
10. References 36
10.1. Normative References i, 36
10. 2. Informative References i, 37
Appendi x A. Changes fromRFC 2616y 38
Appendi x B. Inmported ABNF e 39
Appendi x C. Collected ABNF e 39
I NdEX o 41
Fielding, et al. St andards Track [Page 3]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

1

1

1

I ntroduction

HTTP is typically used for distributed information systens, where
performance can be inproved by the use of response caches. This
docunent defines aspects of HITP/1.1 related to caching and reusing
response nessages.

An HTTP cache is a local store of response nessages and the subsystem
that controls storage, retrieval, and deletion of nmessages init. A
cache stores cacheabl e responses in order to reduce the response tine
and network bandw dth consunption on future, equival ent requests.

Any client or server MAY enploy a cache, though a cache cannot be
used by a server that is acting as a tunnel

A shared cache is a cache that stores responses to be reused by nore
than one user; shared caches are usually (but not always) deployed as
a part of an intermediary. A private cache, in contrast, is
dedicated to a single user; often, they are deployed as a conponent
of a user agent.

The goal of caching in HTTP/1.1 is to significantly inprove
performance by reusing a prior response nessage to satisfy a current
request. A stored response is considered "fresh", as defined in
Section 4.2, if the response can be reused without "validation"
(checking with the origin server to see if the cached response
remains valid for this request). A fresh response can therefore
reduce both | atency and network overhead each tinme it is reused.

When a cached response is not fresh, it might still be reusable if it
can be freshened by validation (Section 4.3) or if the originis
unavail abl e (Section 4.2.4).

1. Conformance and Error Handling

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Conformance criteria and considerations regarding error handling are
defined in Section 2.5 of [RFC7230].

2. Syntax Notation

This specification uses the Augnented Backus- Naur Form (ABNF)
notation of [RFC5234] with a list extension, defined in Section 7 of
[RFC7230], that allows for conpact definition of conma-separated
lists using a '# operator (simlar to howthe '*' operator indicates

Fielding, et al. St andards Track [Page 4]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

repetition). Appendix B describes rules inported from ot her
docunents. Appendi x C shows the collected granmar with all 1ist
operators expanded to standard ABNF notation

1.2.1. Del ta Seconds

The delta-seconds rul e specifies a non-negative integer, representing
time in seconds.

delta-seconds = 1*DIGA T

A recipient parsing a delta-seconds value and converting it to binary
formought to use an arithnetic type of at least 31 bits of
non-negative integer range. |f a cache receives a delta-seconds

val ue greater than the greatest integer it can represent, or if any
of its subsequent cal cul ati ons overfl ows, the cache MJST consider the
value to be either 2147483648 (2"31) or the greatest positive integer
it can conveniently represent.

Not e: The val ue 2147483648 is here for historical reasons,
effectively represents infinity (over 68 years), and does not need
to be stored in binary form an inplenentation could produce it as
a canned string if any overflow occurs, even if the cal cul ations
are performed with an arithnetic type incapable of directly
representing that nunber. What nmatters here is that an overfl ow
be detected and not treated as a negative value in |ater

cal cul ati ons

2. Overview of Cache Operation

Proper cache operation preserves the senmantics of HITP transfers
([RFC7231]) while elinmnating the transfer of information already
held in the cache. Al though caching is an entirely OPTI ONAL feature
of HTTP, it can be assumed that reusing a cached response is
desirable and that such reuse is the default behavi or when no

requi renent or local configuration prevents it. Therefore, HITP
cache requirenents are focused on preventing a cache from either
storing a non-reusabl e response or reusing a stored response

i nappropriately, rather than mandating that caches al ways store and
reuse particul ar responses.

Each cache entry consists of a cache key and one or nore HITP
responses corresponding to prior requests that used the same key.

The nmost common form of cache entry is a successful result of a
retrieval request: i.e., a 200 (OK) response to a GET request, which
contains a representation of the resource identified by the request
target (Section 4.3.1 of [RFC7231]). However, it is also possible to
cache pernmanent redirects, negative results (e.g., 404 (Not Found)),

Fielding, et al. St andards Track [Page 5]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

inconplete results (e.g., 206 (Partial Content)), and responses to
nmet hods other than GET if the method’ s definition allows such caching
and defines sonething suitable for use as a cache key.
The primary cache key consists of the request method and target URI
However, since HTTP caches in common use today are typically linited
to caching responses to GET, nany caches sinply decline other nethods
and use only the URI as the prinmary cache key.
If a request target is subject to content negotiation, its cache
entry mght consist of multiple stored responses, each differentiated
by a secondary key for the values of the original request’s selecting
header fields (Section 4.1).

3. Storing Responses in Caches
A cache MJUST NOT store a response to any request, unless:

0 The request nmethod is understood by the cache and defined as being
cacheabl e, and

0 the response status code is understood by the cache, and

0 the "no-store" cache directive (see Section 5.2) does not appear
in request or response header fields, and

o the "private" response directive (see Section 5.2.2.6) does not
appear in the response, if the cache is shared, and

o the Authorization header field (see Section 4.2 of [RFC7235]) does
not appear in the request, if the cache is shared, unless the
response explicitly allows it (see Section 3.2), and

0o the response either:

* contains an Expires header field (see Section 5.3), or

* contains a nax-age response directive (see Section 5.2.2.8), or

* contains a s-nmaxage response directive (see Section 5.2.2.9)
and the cache is shared, or

* contains a Cache Control Extension (see Section 5.2.3) that
allows it to be cached, or

* has a status code that is defined as cacheabl e by default (see
Section 4.2.2), or

Fielding, et al. St andards Track [Page 6]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

* contains a public response directive (see Section 5.2.2.5).

Note that any of the requirenents |isted above can be overridden by a
cache-control extension; see Section 5.2.3.

In this context, a cache has "understood" a request nethod or a
response status code if it recognizes it and inplenents all specified
cachi ng-rel at ed behavi or.

Note that, in normal operation, sone caches will not store a response
that has neither a cache validator nor an explicit expiration tine,
as such responses are not usually useful to store. However, caches
are not prohibited fromstoring such responses.

3.1. Storing Inconpl ete Responses

A response nessage is considered conplete when all of the octets

i ndi cated by the nessage fram ng ([RFC7230]) are received prior to
the connection being closed. |If the request nethod is GET, the
response status code is 200 (OK), and the entire response header
section has been received, a cache MAY store an inconplete response
message body if the cache entry is recorded as inconplete. Likew se,
a 206 (Partial Content) response MAY be stored as if it were an

i nconplete 200 (OK) cache entry. However, a cache MJUST NOT store

i nconpl ete or partial-content responses if it does not support the
Range and Content-Range header fields or if it does not understand
the range units used in those fields.

A cache MAY conplete a stored inconplete response by making a
subsequent range request ([RFC7233]) and conbi ning the successfu
response with the stored entry, as defined in Section 3.3. A cache
MUST NOT use an inconplete response to answer requests unless the
response has been nade conplete or the request is partial and
specifies a range that is wholly within the inconplete response. A
cache MUST NOT send a partial response to a client without explicitly
marking it as such using the 206 (Partial Content) status code.

3.2. Storing Responses to Authenticated Requests

A shared cache MJUST NOT use a cached response to a request with an
Aut hori zation header field (Section 4.2 of [RFC7/235]) to satisfy any
subsequent request unless a cache directive that allows such
responses to be stored is present in the response.

In this specification, the follow ng Cache-Control response

directives (Section 5.2.2) have such an effect: nust-revalidate,
public, and s-nmaxage.

Fielding, et al. St andards Track [Page 7]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Not e that cached responses that contain the "nust-revalidate" and/or
"s-maxage" response directives are not allowed to be served stale
(Section 4.2.4) by shared caches. |In particular, a response with

ei ther "max-age=0, nust-revalidate" or "s-maxage=0" cannot be used to
satisfy a subsequent request without revalidating it on the origin
server.

3.3. Conbining Partial Content

A response mght transfer only a partial representation if the
connection closed prematurely or if the request used one or nore
Range specifiers ([RFC7233]). After several such transfers, a cache
m ght have received several ranges of the sane representation. A
cache MAY conbine these ranges into a single stored response, and
reuse that response to satisfy later requests, if they all share the
same strong validator and the cache conplies with the client
requirenents in Section 4.3 of [RFC7233].

When conbi ning the new response with one or nore stored responses, a
cache MJST:

0 delete any Warning header fields in the stored response wth
war n- code 1xx (see Section 5.5);

0 retain any Warning header fields in the stored response wth
war n- code 2xx; and,

0 use other header fields provided in the new response, aside from
Content - Range, to replace all instances of the corresponding
header fields in the stored response.

4. Constructing Responses from Caches

When presented with a request, a cache MJST NOT reuse a stored
response, unl ess:

0 The presented effective request URI (Section 5.5 of [RFC7230]) and
that of the stored response nmatch, and

o the request nmethod associated with the stored response allows it
to be used for the presented request, and

0 selecting header fields nom nated by the stored response (if any)
mat ch those presented (see Section 4.1), and

Fielding, et al. St andards Track [Page 8]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

o the presented request does not contain the no-cache pragna
(Section 5.4), nor the no-cache cache directive (Section 5.2.1),
unl ess the stored response is successfully validated
(Section 4.3), and

o the stored response does not contain the no-cache cache directive
(Section 5.2.2.2), unless it is successfully validated
(Section 4.3), and

0 the stored response is either:
* fresh (see Section 4.2), or
* allowed to be served stale (see Section 4.2.4), or
* successfully validated (see Section 4.3).

Note that any of the requirenents |isted above can be overridden by a
cache-control extension; see Section 5.2.3.

When a stored response is used to satisfy a request without

val i dati on, a cache MJST generate an Age header field (Section 5.1),
repl acing any present in the response with a value equal to the
stored response’s current_age; see Section 4.2.3.

A cache MUST wite through requests with nethods that are unsafe
(Section 4.2.1 of [RFC7231]) to the origin server; i.e., a cache is
not allowed to generate a reply to such a request before having
forwarded the request and having received a correspondi ng response.

Al so, note that unsafe requests night invalidate al ready-stored
responses; see Section 4. 4.

When nore than one suitable response is stored, a cache MJST use the
nost recent response (as determ ned by the Date header field). It
can also forward the request with "Cache-Control: nmax-age=0" or
"Cache-Control: no-cache" to disanbi guate which response to use.

A cache that does not have a clock avail able MJST NOT use stored
responses without revalidating them upon every use.

4.1. Calculating Secondary Keys with Vary
When a cache receives a request that can be satisfied by a stored

response that has a Vary header field (Section 7.1.4 of [RFCr231]),
it MJUST NOT use that response unless all of the selecting header

Fielding, et al. St andards Track [Page 9]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

fields nom nated by the Vary header field match in both the origina
request (i.e., that associated with the stored response), and the
presented request.

The selecting header fields fromtwo requests are defined to match if
and only if those in the first request can be transfornmed to those in
the second request by applying any of the foll ow ng:

0 adding or renpving whitespace, where allowed in the header field s
synt ax

o conbining nmultiple header fields with the sane field nane (see
Section 3.2 of [RFC7230])

o nornalizing both header field values in a way that is known to
have identical semantics, according to the header field' s
specification (e.g., reordering field val ues when order is not
significant; case-nornalization, where values are defined to be
case-insensitive)

If (after any nornalization that might take place) a header field is
absent froma request, it can only match another request if it is
al so absent there.

A Vary header field-value of "*" always fails to match.

The stored response with matching sel ecting header fields is known as
the sel ected response.

If nultiple selected responses are avail able (potentially including
responses without a Vary header field), the cache will need to choose
one to use. Wien a selecting header field has a known nechani sm for
doing so (e.g., gvalues on Accept and sinilar request header fields),
t hat mechani sm MAY be used to select preferred responses; of the
remai nder, the nost recent response (as determ ned by the Date header
field) is used, as per Section 4.

If no selected response is avail able, the cache cannot satisfy the

presented request. Typically, it is forwarded to the origin server
in a (possibly conditional; see Section 4.3) request.

Fielding, et al. St andards Track [Page 10]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.2. Freshness

A fresh response is one whose age has not yet exceeded its freshness
lifetime. Conversely, a stale response is one where it has.

A response’s freshness lifetine is the length of tinme between its
generation by the origin server and its expiration tine. An explicit
expiration time is the time at which the origin server intends that a
stored response can no |l onger be used by a cache wi thout further

val i dation, whereas a heuristic expiration tine is assigned by a
cache when no explicit expiration time is avail able.

A response’s age is the tinme that has passed since it was generated
by, or successfully validated with, the origin server

When a response is "fresh" in the cache, it can be used to satisfy
subsequent requests w thout contacting the origin server, thereby
i mproving efficiency.

The primary mechani sm for determ ning freshness is for an origin
server to provide an explicit expiration tine in the future, using
either the Expires header field (Section 5.3) or the nax-age response
directive (Section 5.2.2.8). Generally, origin servers will assign
future explicit expiration tines to responses in the belief that the
representation is not likely to change in a semantically significant
way before the expiration tinme is reached.

If an origin server wishes to force a cache to validate every
request, it can assign an explicit expiration tinme in the past to

i ndicate that the response is already stale. Conpliant caches wll
nornmal ly validate a stale cached response before reusing it for
subsequent requests (see Section 4.2.4).

Since origin servers do not always provide explicit expiration tinmnes,
caches are also allowed to use a heuristic to deternmi ne an expiration
time under certain circunstances (see Section 4.2.2).

The calculation to determine if a response is fresh is:

response_is fresh = (freshness_lifetime > current_age)

freshness lifetine is defined in Section 4.2.1; current_age is
defined in Section 4.2.3.

Cients can send the nmax-age or mn-fresh cache directives in a

request to constrain or relax freshness calculations for the
correspondi ng response (Section 5.2.1).

Fielding, et al. St andards Track [Page 11]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

When cal cul ating freshness, to avoid comon problens in date parsing:

o Although all date formats are specified to be case-sensitive, a
cache recipient SHOULD match day, week, and tine-zone nanes
case-insensitively.

o |If a cache recipient’s internal inplenentation of tinme has |ess
resol ution than the value of an HTTP-date, the recipient MJST
internally represent a parsed Expires date as the nearest tine
equal to or earlier than the received val ue.

0 A cache recipient MJUST NOT allow |l ocal tine zones to influence the
cal cul ation or conparison of an age or expiration tine.

0 A cache recipient SHOULD consider a date with a zone abbrevi ation
other than GMI or UTC to be invalid for calculating expiration

Note that freshness applies only to cache operation; it cannot be
used to force a user agent to refresh its display or reload a
resource. See Section 6 for an explanation of the difference between
caches and history nmechani sns.

4.2.1. Calculating Freshness Lifetine
A cache can calculate the freshness lifetine (denoted as
freshness lifetine) of a response by using the first nmatch of the
fol | owi ng:

o If the cache is shared and the s-nmaxage response directive
(Section 5.2.2.9) is present, use its value, or

o |f the max-age response directive (Section 5.2.2.8) is present,
use its value, or

o If the Expires response header field (Section 5.3) is present, use
its value nminus the value of the Date response header field, or

0 Oherwise, no explicit expiration time is present in the response.
A heuristic freshness lifetinme might be applicable; see
Section 4.2.2.

Note that this calculation is not vulnerable to clock skew, since all
of the information cones fromthe origin server

Fielding, et al. St andards Track [Page 12]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.

4.

2.

2.

When there is nore than one value present for a given directive
(e.g., two Expires header fields, multiple Cache-Control: max-age
directives), the directive's value is considered invalid. Caches are
encouraged to consider responses that have invalid freshness
information to be stale.

2. Calculating Heuristic Freshness

Since origin servers do not always provide explicit expiration tines,
a cache MAY assign a heuristic expiration time when an explicit time
is not specified, enploying algorithns that use other header field
val ues (such as the Last-Mdified tine) to estimate a pl ausi bl e
expiration tinme. This specification does not provide specific

al gorithnms, but does inpose worst-case constraints on their results.

A cache MUST NOT use heuristics to deternine freshness when an
explicit expiration tine is present in the stored response. Because
of the requirenents in Section 3, this neans that, effectively,
heuristics can only be used on responses wi thout explicit freshness
whose status codes are defined as cacheabl e by default (see Section
6.1 of [RFC7231]), and those responses w thout explicit freshness
that have been marked as explicitly cacheable (e.g., with a "public"
response directive).

If the response has a Last-Modified header field (Section 2.2 of

[RFC7232]), caches are encouraged to use a heuristic expiration value
that is no nore than sonme fraction of the interval since that tine

A typical setting of this fraction mght be 10%

Wien a heuristic is used to calculate freshness lifetime, a cache
SHOULD generate a Warning header field with a 113 warn-code (see
Section 5.5.4) in the response if its current_age is nore than 24
hours and such a warning is not already present.

Note: Section 13.9 of [RFC2616] prohibited caches from cal cul ating
heuristic freshness for URIs with query conponents (i.e., those
containing '?'). |In practice, this has not been wi dely

i npl enented. Therefore, origin servers are encouraged to send
explicit directives (e.g., Cache-Control: no-cache) if they w sh
to preclude caching.

3. Calculating Age

The Age header field is used to convey an estimated age of the
response nessage when obtained froma cache. The Age field value is
the cache’s estimate of the nunmber of seconds since the response was
generated or validated by the origin server. 1In essence, the Age

Fielding, et al. St andards Track [Page 13]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

value is the sumof the time that the response has been resident in

each of the caches along the path fromthe origin server, plus the

amount of time it has been in transit along network paths.

The following data is used for the age cal cul ati on

age_val ue
The term "age_val ue" denotes the value of the Age header field
(Section 5.1), in a formappropriate for arithnetic operation; or
0, if not avail able.

dat e_val ue
The term "date_val ue" denotes the value of the Date header field,
in a formappropriate for arithnmetic operations. See Section
7.1.1.2 of [RFC7231] for the definition of the Date header field,
and for requirenents regarding responses w thout it.

now
The term "now' neans "the current value of the clock at the host
perform ng the cal culation”. A host ought to use NTP ([RFC5905])
or sone simlar protocol to synchronize its clocks to Coordinated
Uni versal Tine.

request _tine

The current value of the clock at the host at the tinme the request
resulting in the stored response was nmade.

response_tinme

The current value of the clock at the host at the tine the
response was received.

A response’s age can be calculated in two entirely independent ways:

1. the "apparent_age": response_tine minus date_value, if the |oca
clock is reasonably well synchronized to the origin server’s

clock. If the result is negative, the result is replaced by
zero.
2. the "corrected age value", if all of the caches along the

response path inplenent HTTP/1.1. A cache MIUST interpret this
value relative to the tine the request was initiated, not the
time that the response was received.

Fielding, et al. St andards Track [Page 14]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

apparent _age = max(0, response_tine - date_val ue);

response_del ay = response_tine - request_tine;
corrected_age_val ue = age_val ue + response_del ay;

These are conbi ned as
corrected_initial _age = max(apparent _age, corrected_age val ue);

unl ess the cache is confident in the value of the Age header field
(e.g., because there are no HITP/ 1.0 hops in the Via header field),
in which case the corrected _age val ue MAY be used as the
corrected_initial _age.

The current _age of a stored response can then be cal cul ated by addi ng
the amount of tine (in seconds) since the stored response was | ast
validated by the origin server to the corrected_initial_age

resident _tinme = now - response_tine;
current _age = corrected initial _age + resident _tineg;

4.2.4. Serving Stal e Responses

A "stale" response is one that either has explicit expiry infornmation
or is allowed to have heuristic expiry cal culated, but is not fresh
according to the calculations in Section 4. 2.

A cache MUST NOT generate a stale response if it is prohibited by an
explicit in-protocol directive (e.g., by a "no-store" or "no-cache"
cache directive, a "nust-revalidate" cache-response-directive, or an
appl i cabl e "s-nmaxage" or "proxy-revalidate" cache-response-directive;
see Section 5.2.2).

A cache MUST NOT send stal e responses unless it is disconnected
(i.e., it cannot contact the origin server or otherwise find a
forward path) or doing so is explicitly allowed (e.g., by the
max- stal e request directive; see Section 5.2.1).

A cache SHOULD generate a Warning header field with the 110 warn-code
(see Section 5.5.1) in stale responses. Likew se, a cache SHOULD
generate a 112 warn-code (see Section 5.5.3) in stale responses if
the cache is disconnected.

A cache SHOULD NOT generate a new Warni ng header field when
forwardi ng a response that does not have an Age header field, even if
the response is already stale. A cache need not validate a response
that nmerely becane stale in transit.

Fielding, et al. St andards Track [Page 15]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.3. Validation

Wien a cache has one or nore stored responses for a requested UR

but cannot serve any of them (e.g., because they are not fresh, or
one cannot be sel ected; see Section 4.1), it can use the conditiona
request mechani sm [RFC7232] in the forwarded request to give the next
i nbound server an opportunity to select a valid stored response to
use, updating the stored netadata in the process, or to replace the
stored response(s) with a new response. This process is known as
"validating" or "revalidating" the stored response.

4.3.1. Sending a Validation Request

Wien sending a conditional request for cache validation, a cache
sends one or nore precondition header fields containing validator
nmetadata fromits stored response(s), which is then conpared by
recipients to determ ne whether a stored response is equivalent to a
current representation of the resource.

One such validator is the tinmestanp given in a Last-Modified header
field (Section 2.2 of [RFCr232]), which can be used in an

| f-Mdified-Since header field for response validation, or in an

I f-Unnodified-Since or |f-Range header field for representation
selection (i.e., the client is referring specifically to a previously
obt ai ned representation with that tinmestanp).

Anot her validator is the entity-tag given in an ETag header field
(Section 2.3 of [RFC7232]). One or nore entity-tags, indicating one
or nore stored responses, can be used in an |f-None-Mtch header
field for response validation, or in an If-Match or |f-Range header
field for representation selection (i.e., the client is referring
specifically to one or nore previously obtained representations wth
the listed entity-tags).

4.3.2. Handling a Received Validation Request

Each client in the request chain may have its own cache, so it is
common for a cache at an internediary to receive conditional requests
from ot her (outbound) caches. Likew se, some user agents nake use of
conditional requests to linmt data transfers to recently nodified
representations or to conplete the transfer of a partially retrieved
representation.

If a cache receives a request that can be satisfied by reusing one of
its stored 200 (OK) or 206 (Partial Content) responses, the cache
SHOULD eval uate any applicable conditional header field preconditions
received in that request with respect to the c