
RFC 9800
Compressed SRv6 Segment List Encoding

Abstract
Segment Routing over IPv6 (SRv6) is the instantiation of Segment Routing (SR) on the IPv6 data
plane. This document specifies new flavors for the SRv6 endpoint behaviors defined in RFC 8986,
which enable the compression of an SRv6 segment list. Such compression significantly reduces
the size of the SRv6 encapsulation needed to steer packets over long segment lists.

This document updates RFC 8754 by allowing a Segment List entry in the Segment Routing
Header (SRH) to be either an IPv6 address, as specified in RFC 8754, or a REPLACE-CSID
container in packed format, as specified in this document.

Stream: Internet Engineering Task Force (IETF)
RFC: 9800
Updates: 8754
Category: Standards Track
Published: June 2025
ISSN: 2070-1721
Authors:

W. Cheng, Ed.
China Mobile

C. Filsfils
Cisco Systems, Inc.

Z. Li
Huawei Technologies

B. Decraene
Orange

F. Clad, Ed.
Cisco Systems, Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9800

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Cheng, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9800
https://www.rfc-editor.org/rfc/rfc8754
https://www.rfc-editor.org/info/rfc9800
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

2. Terminology

2.1. Requirements Language

3. Basic Concepts

4. SR Segment Endpoint Flavors

4.1. NEXT-CSID Flavor

4.1.1. End with NEXT-CSID

4.1.2. End.X with NEXT-CSID

4.1.3. End.T with NEXT-CSID

4.1.4. End.B6.Encaps with NEXT-CSID

4.1.5. End.B6.Encaps.Red with NEXT-CSID

4.1.6. End.BM with NEXT-CSID

4.1.7. Combination with PSP, USP, and USD Flavors

4.2. REPLACE-CSID Flavor

4.2.1. End with REPLACE-CSID

4.2.2. End.X with REPLACE-CSID

4.2.3. End.T with REPLACE-CSID

4.2.4. End.B6.Encaps with REPLACE-CSID

4.2.5. End.B6.Encaps.Red with REPLACE-CSID

4.2.6. End.BM with REPLACE-CSID

4.2.7. End.DX and End.DT with REPLACE-CSID

4.2.8. Combination with PSP, USP, and USD Flavors

5. CSID Allocation

5.1. Global CSID

5.2. Local CSID

5.3. Recommended Installation of CSIDs in FIB

4

5

6

6

6

7

10

10

11

11

12

12

13

13

16

17

18

18

19

19

20

20

21

21

21

22

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 2

6. SR Source Node

6.1. SID Validation for Compression

6.2. Segment List Compression

6.3. Rules for Segment Lists Containing NEXT-CSID Flavor SIDs

6.4. Rules for Segment Lists Containing REPLACE-CSID Flavor SIDs

6.5. Upper-Layer Checksums

7. Inter-Domain Compression

7.1. End.LBS: Locator-Block Swap

7.1.1. End.LBS with NEXT-CSID

7.1.2. End.LBS with REPLACE-CSID

7.2. End.XLBS: L3 Cross-Connect and Locator-Block Swap

7.2.1. End.XLBS with NEXT-CSID

7.2.2. End.XLBS with REPLACE-CSID

8. Control Plane

9. Operational Considerations

9.1. Flavor, Block, and CSID Length

9.2. GIB/LIB Usage

9.3. Pinging a SID

9.4. ICMP Error Processing

10. Applicability to Other SRv6 Endpoint Behaviors

11. Security Considerations

12. IANA Considerations

12.1. SRv6 Endpoint Behaviors

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Complete Pseudocodes

A.1. End with NEXT-CSID

A.2. End.X with NEXT-CSID

A.3. End.T with NEXT-CSID

23

23

23

26

27

27

28

28

29

29

29

30

30

30

31

31

32

33

33

34

34

35

35

38

38

38

40

40

41

43

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 3

A.4. End.B6.Encaps with NEXT-CSID

A.5. End.BM with NEXT-CSID

A.6. End with REPLACE-CSID

A.7. End.X with REPLACE-CSID

A.8. End.T with REPLACE-CSID

A.9. End.B6.Encaps with REPLACE-CSID

A.10. End.BM with REPLACE-CSID

Acknowledgements

Contributors

Authors' Addresses

45

47

49

51

53

55

56

58

58

59

1. Introduction
The Segment Routing (SR) architecture describes two data plane instantiations of SR:
SR over MPLS (SR-MPLS) and SR over IPv6 (SRv6).

SRv6 Network Programming builds upon the IPv6 Segment Routing Header (SRH)
 to define a framework for constructing a network program with topological and

service segments.

Some SRv6 applications, such as strict path traffic engineering, may require long segment lists.
Compressing the encoding of these long segment lists in the packet header can significantly
reduce the header size. This document specifies new flavors to the SRv6 endpoint behaviors
defined in that enable a compressed encoding of the SRv6 segment list. This document
also specifies new SRv6 endpoint behaviors to preserve the compression efficiency in multi-
domain environments.

The SRv6 endpoint behaviors defined in this document leverage the SRv6 data plane defined in
 and ; the behaviors are compatible with the SRv6 control plane extensions

for IS-IS , OSPF , and BGP .

This document updates by allowing a Segment List entry in the SRH to be either an
IPv6 address, as specified in , or a REPLACE-CSID container in packed format, as
specified in Section 4.2.

[RFC8402]

[RFC8986]
[RFC8754]

[RFC8986]

[RFC8754] [RFC8986]
[RFC9352] [RFC9513] [RFC9252]

[RFC8754]
[RFC8754]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 4

Locator-Block:

Locator-Node:

Compressed-SID (CSID):

CSID container:

CSID sequence:

Compressed SID list:

Global Identifiers Block (GIB):

Local Identifiers Block (LIB):

2. Terminology
This document leverages the terms defined in , , and , in particular
segment, segment list, Segment Identifier (SID), SID list, SR policy, prefix segment, adjacency
segment, SRH, SR domain, SR source node, SR segment endpoint node, transit node, SRv6
endpoint behavior, flavor, SID block, locator, function, and argument. The reader is assumed to
be familiar with this terminology.

This document introduces the following new terms:

The most significant bits of a SID locator that represent the SRv6 SID block. The
Locator-Block is referred to as "B" in .

The least significant bits of a SID locator that identify the SR segment endpoint
node instantiating the SID. The Locator-Node is referred to as "N" in .

A compressed encoding of a SID. The CSID includes the Locator-Node
and Function bits of the SID being compressed. If either constituent of the SID is empty (zero
length), then the same applies to its CSID encoding.

A 128-bit IPv6 address that functions as a container holding a list of one or
more CSIDs and the Argument (if any) of the last CSID.

A group of one or more consecutive SID list entries encoding the common
Locator-Block and at least one CSID container.

A segment list encoding that reduces the packet header length thanks to
one or more CSID sequences. A compressed SID list also contains zero, one, or more
uncompressed SIDs.

The pool of CSID values available for global allocation.

The pool of CSID values available for local allocation.

In this document, the length of each constituent part of a SID is referred to as follows:

LBL is the Locator-Block length of the SID.
LNL is the Locator-Node length of the SID.
FL is the Function length of the SID.
AL is the Argument length of the SID.

In addition, the Locator-Node and Function length (LNFL) is the sum of the LNL and the FL of
the SID. It is also referred to as the "CSID length".

[RFC8402] [RFC8754] [RFC8986]

Section 3.1 of [RFC8986]

Section 3.1 of [RFC8986]

•
•
•
•

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 5

https://rfc-editor.org/rfc/rfc8986#section-3.1
https://rfc-editor.org/rfc/rfc8986#section-3.1

2.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Basic Concepts
In an SR domain, all SRv6 SIDs instantiated from the same Locator-Block share the same most
significant bits. In addition, when the combined length of the SRv6 SID Locator, Function, and
Argument is smaller than 128 bits, the least significant bits of the SID are padded with zeros. The
compressed segment list encoding seeks to decrease the packet header length by avoiding the
repetition of the same Locator-Block and reducing the use of padding bits.

Building upon, and fully compatible with the mechanisms specified in and ,
the compressed segment list encoding leverages a SID list compression logic at the SR source
node (see Section 6) in combination with new flavors of the SRv6 endpoint behaviors that
process the compressed SID list (see Section 4).

An SR source node constructs and compresses the SID list depending on the SIDs instantiated on
each SR segment endpoint node that the packet is intended to traverse, as well as its own
compression capabilities. The resulting compressed SID list is a combination of CSID sequences,
for the SIDs that the SR source node was able to compress, and uncompressed SIDs, which could
not be compressed. In case the SR source node is able to compress all the SIDs in the SID list, the
compressed SID list comprises only CSID sequences (one or more) and no uncompressed SIDs.
Conversely, the compressed SID list comprises only uncompressed SIDs when the SR source is
unable to compress any of the constituent SIDs.

[RFC8754] [RFC8986]

4. SR Segment Endpoint Flavors
This section defines two SR segment endpoint flavors: NEXT-CSID and REPLACE-CSID, for the
End, End.X, End.T, End.B6.Encaps, End.B6.Encaps.Red, and End.BM behaviors of .

This section also defines a REPLACE-CSID flavor for the End.DX6, End.DX4, End.DT6, End.DT4,
End.DT46, End.DX2, End.DX2V, End.DT2U, and End.DT2M behaviors of . A counterpart
NEXT-CSID flavor is not defined for these behaviors. Any SID can be the last element of a CSID
sequence compressed using the NEXT-CSID flavor (see Section 4.1) and the aforementioned SRv6
endpoint behaviors are always in the last position in a SID list; thus, there is no need for any
modification of the behaviors defined in .

Future documents may extend the applicability of the NEXT-CSID and REPLACE-CSID flavors to
other SRv6 endpoint behaviors (see Section 10).

[RFC8986]

[RFC8986]

[RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 6

The use of these flavors, either individually or in combination, enables the compressed segment
list encoding.

The NEXT-CSID flavor and the REPLACE-CSID flavor both leverage the SID Argument to
determine the next SID to be processed, but employ different SID list compression schemes. With
the NEXT-CSID flavor, each CSID container is a fully formed SRv6 SID with the common Locator-
Block for all the CSIDs in the CSID container, a Locator-Node and Function that are those of the
first CSID, and an Argument carrying the subsequent CSIDs. With the REPLACE-CSID flavor, only
the first element in a CSID sequence is a fully formed SRv6 SID. It has the common Locator-Block
for all the CSIDs in the CSID sequence, and a Locator-Node and Function that are those of the
first CSID. The remaining elements in the CSID sequence are CSID containers carrying the
subsequent CSIDs without the Locator-Block.

Regardless of which flavor is used, the IPv6 address carried in the Destination Address field of
the IPv6 header is a valid SRv6 SID conforming to .

In the remainder of this document, the term "a SID of this document" refers to any End, End.X,
End.T, End.B6.Encaps, End.B6.Encaps.Red, or End.BM SID with the NEXT-CSID or the REPLACE-
CSID flavor and with any combination of Penultimate Segment Pop (PSP), Ultimate Segment Pop
(USP), and Ultimate Segment Decapsulation (USD) flavor, or any End.DX6, End.DX4, End.DT6,
End.DT4, End.DT46, End.DX2, End.DX2V, End.DT2U, or End.DT2M with the REPLACE-CSID flavor.
All the SRv6 endpoint behaviors introduced in this document are listed in Table 1.

In the remainder of this document, the terms "NEXT-CSID flavor SID" and "REPLACE-CSID flavor
SID" refer to any SID of this document with the NEXT-CSID flavor and with the REPLACE-CSID
flavor, respectively.

[RFC9602]

4.1. NEXT-CSID Flavor
A CSID sequence compressed using the mechanism of the NEXT-CSID flavor comprises one or
more CSID containers. Each CSID container is a fully formed 128-bit SID structured as shown in
Figure 1. It carries a Locator-Block followed by a series of CSIDs. The Locator-Node and Function
of the CSID container are those of the first CSID, and its Argument is the contiguous series of
subsequent CSIDs. The second CSID is encoded in the most significant bits of the CSID container
Argument. The third CSID is encoded in the bits of the Argument that immediately follow the
second CSID, and so on. When all CSIDs have the same length, a CSID container can carry up to K
CSIDs, where K is computed as floor((128-LBL)/LNFL) (floor(x) is the greatest integer less than or
equal to x). Each CSID container for NEXT-CSID is independent, such that contiguous
CSID containers in a CSID sequence can be considered to be separate CSID sequences.

When a CSID sequence compressed using the NEXT-CSID flavor comprises at least two CSIDs, the
last CSID in the sequence is not required to have the NEXT-CSID flavor. It can be bound to any
SRv6 endpoint behavior, including behaviors and REPLACE-CSID flavor, as long as the
updated Destination Address resulting from the processing of the previous CSID in the sequence
is a valid form for that last SID. Line S12 of the first pseudocode in Section 6.2 provides sufficient
conditions to ensure this property.

[GKP94]

[RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 7

Figure 2 illustrates a compressed SID list as could be produced by an SR source node steering a
packet into an SR policy with a SID list of eight NEXT-CSID flavor SIDs. All SIDs in this example
have a 48-bit Locator-Block, 16-bit combined Locator-Node and Function, and 64-bit Argument.
The SR source node compresses the SR policy SID list as a compressed SID list of two CSID
containers. The first CSID container carries a Locator-Block and the first five CSIDs. The second
CSID container carries a Locator-Block and the sixth, seventh, and eighth CSIDs. Since the SR
source node does not use the second CSID container at full capacity, it sets the 32 least significant
bits to zero. The SR source node sets the IPv6 Destination Address (DA) with the value of the first
CSID container and the first element of the SRH Segment List with the value of the second CSID
container. Without reduced SRH (see), the SR source node also writes
the first CSID container as the second element of the SRH Segment List.

Note that the CSIDs within a given CSID container appear in forward order to leverage the
longest-prefix match IP forwarding, while the entries in the SRH Segment List appear in
reversed order of their processing, as specified in .

Figure 1: Structure of a NEXT-CSID Flavor SID (Scaled for a 48-Bit Locator‑Block, 16-Bit Combined
Locator-Node and Function, and 64-Bit Argument)

Locator-Block Loc-Node Argument
Function

LBL LNFL AL

Section 4.1.1 of [RFC8754]

Section 4.1 of [RFC8754]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc8754#section-4.1.1
https://rfc-editor.org/rfc/rfc8754#section-4.1

An implementation support a 32-bit LBL and a 16-bit CSID length (LNFL) for NEXT-CSID
flavor SIDs, and it support any additional Locator-Block and CSID length.

The AL for NEXT-CSID flavor SIDs is equal to 128-LBL-LNFL.

When processing an IPv6 packet that matches a Forwarding Information Base (FIB) entry locally
instantiated as a SID with the NEXT-CSID flavor, the SR segment endpoint node applies the
procedure specified in the following subsection that corresponds to the SID behavior. If the SID
also has the PSP, USP, or USD flavor, the procedure is modified as described in Section 4.1.7.

An SR segment endpoint node instantiating a SID of this document with the NEXT-CSID flavor
 accept any Argument value for that SID.

At a high level, for any SID with the NEXT-CSID flavor, the SR segment endpoint node determines
the next SID of the SID list as follows. If the Argument value of the active SID is non-zero, the SR
segment endpoint node constructs the next SID from the active SID by copying the entire SID
Argument value to the bits that immediately follow the Locator-Block, thus overwriting the
active SID Locator-Node and Function with those of the next CSID, and filling the least significant

Figure 2: Compressed SID List of Eight NEXT-CSID Flavor SIDs with a 48-Bit Locator‑Block, 16-Bit
Combined Locator-Node and Function, and 64-Bit Argument

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Locator-Block
1st CSID

2nd CSID 3rd CSID

4th CSID 5th CSID

First CSID container

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Locator-Block
6th CSID

7th CSID 8th CSID

0

Second CSID container

MUST
MAY

MUST

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 9

LNFL bits of the Argument with zeros. Otherwise (if the Argument value is 0), the SR segment
endpoint node copies the next 128-bit Segment List entry from the SRH to the Destination
Address field of the IPv6 header.

4.1.1. End with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End SID with
the NEXT-CSID flavor, the procedure described in is executed with the
following modifications.

The below pseudocode is inserted between lines S01 and S02 of the SRH processing in
. In addition, this pseudocode is executed before processing the first header in the

IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options
header. If the IPv6 extension header chain does not include any header matching this criterion,
this pseudocode is executed before processing the upper-layer header.

Notes:

DA.Argument identifies the value contained in the bits [(LBL+LNFL)..127] in
the Destination Address of the IPv6 header.
The value in the Segments Left field of the SRH is not modified when
DA.Argument in the received packet has a non-zero value.

A rendering of the complete pseudocode is provided in Appendix A.1.

Section 4.1 of [RFC8986]

Section 4.1
of [RFC8986]

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }

•

•

4.1.2. End.X with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.X SID
with the NEXT-CSID flavor, the procedure described in is executed with
the following modifications.

The pseudocode in Section 4.1.1 of this document is modified by replacing line N08 as shown
below.

Section 4.2 of [RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 10

https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.2

Note: the variable J is defined in .

The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in
 after applying the modification described in . In

addition, this pseudocode is executed before processing the first header in the IPv6 extension
header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the
IPv6 extension header chain does not include any header matching this criterion, this
pseudocode is executed before processing the upper-layer header.

A rendering of the complete pseudocode is provided in Appendix A.2.

N08. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.

Section 4.2 of [RFC8986]

Section
4.1 of [RFC8986] Section 4.2 of [RFC8986]

4.1.3. End.T with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.T SID
with the NEXT-CSID flavor, the procedure described in is executed with
the following modifications.

The pseudocode in Section 4.1.1 of this document is modified by replacing line N08 as shown
below.

Note: the variable T is defined in .

The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in
 after applying the modification described in . In

addition, this pseudocode is executed before processing the first header in the IPv6 extension
header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the
IPv6 extension header chain does not include any header matching this criterion, this
pseudocode is executed before processing the upper-layer header.

A rendering of the complete pseudocode is provided in Appendix A.3.

Section 4.3 of [RFC8986]

N08.1. Set the packet's associated FIB table to T.
N08.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

Section 4.3 of [RFC8986]

Section
4.1 of [RFC8986] Section 4.3 of [RFC8986]

4.1.4. End.B6.Encaps with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an
End.B6.Encaps SID with the NEXT-CSID flavor, the procedure described in

 is executed with the following modifications.

The pseudocode in Section 4.1.1 of this document is modified by replacing line N08 as shown
below.

Section 4.13 of
[RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 11

https://rfc-editor.org/rfc/rfc8986#section-4.2
https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.2
https://rfc-editor.org/rfc/rfc8986#section-4.3
https://rfc-editor.org/rfc/rfc8986#section-4.3
https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.3
https://rfc-editor.org/rfc/rfc8986#section-4.13

Note: the variables A and B, as well as the values of the Payload Length, Traffic
Class, Flow Label, Hop Limit, and Next Header are defined in

.

The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in
. In addition, this pseudocode is executed before processing the first header in

the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination
Options header. If the IPv6 extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.

A rendering of the complete pseudocode is provided in Appendix A.4.

Similar to the base End.B6.Encaps SID defined in , the NEXT-CSID flavor
variant updates the Destination Address field of the inner IPv6 header to the next SID in the
original segment list before encapsulating the packet with the segment list of SR Policy B. At the
endpoint of SR Policy B, the encapsulation is removed and the inner packet is forwarded
towards the exposed Destination Address, which already contains the next SID in the original
segment list.

N08.1. Push a new IPv6 header with its own SRH containing B.
N08.2. Set the outer IPv6 SA to A.
N08.3. Set the outer IPv6 DA to the first SID of B.
N08.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
N08.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.

Section 4.13 of
[RFC8986]

Section
4.13 of [RFC8986]

Section 4.13 of [RFC8986]

4.1.5. End.B6.Encaps.Red with NEXT-CSID

This is an optimization of the End.B6.Encaps with NEXT-CSID behavior.

When processing an IPv6 packet that matches a FIB entry locally instantiated as an
End.B6.Encaps.Red SID with the NEXT-CSID flavor, the procedure described in Section 4.1.4 of
this document is executed with the modifications in .Section 4.14 of [RFC8986]

4.1.6. End.BM with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.BM SID
with the NEXT-CSID flavor, the procedure described in is executed
with the following modifications.

The pseudocode in Section 4.1.1 of this document is modified by replacing line N08 as shown
below.

Section 4.15 of [RFC8986]

N08.1. Push the MPLS label stack for B.
N08.2. Submit the packet to the MPLS engine for transmission.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc8986#section-4.13
https://rfc-editor.org/rfc/rfc8986#section-4.13
https://rfc-editor.org/rfc/rfc8986#section-4.13
https://rfc-editor.org/rfc/rfc8986#section-4.13
https://rfc-editor.org/rfc/rfc8986#section-4.14
https://rfc-editor.org/rfc/rfc8986#section-4.15

Note: the variable B is defined in .

The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in
. In addition, this pseudocode is executed before processing the first header in

the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination
Options header. If the IPv6 extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.

A rendering of the complete pseudocode is provided in Appendix A.5.

Section 4.15 of [RFC8986]

Section
4.15 of [RFC8986]

PSP:

USP:

USD:

4.1.7. Combination with PSP, USP, and USD Flavors

The PSP flavor defined in is unchanged when combined with
the NEXT-CSID flavor.

The USP flavor defined in is unchanged when combined with
the NEXT-CSID flavor.

The USD flavor defined in is unchanged when combined with
the NEXT-CSID flavor.

Section 4.16.1 of [RFC8986]

Section 4.16.2 of [RFC8986]

Section 4.16.3 of [RFC8986]

4.2. REPLACE-CSID Flavor
A CSID sequence compressed using the mechanism of the REPLACE-CSID flavor starts with a
CSID container in fully formed 128-bit SID format. The Locator-Block of this SID is the common
Locator-Block for all the CSIDs in the CSID sequence, its Locator-Node and Function are those of
the first CSID, and its Argument carries the index of the current CSID in the current CSID
container. The Argument value is initially 0. When more segments are present in the segment
list, the CSID sequence continues with one or more CSID containers in packed format carrying
the series of subsequent CSIDs. Each container in packed format is a 128-bit Segment List entry
split into K "positions" of LNFL bits, where K is computed as floor(128/LNFL). If LNFL does not
divide into 128 perfectly, a zero pad is added in the least significant bits of the CSID container to
fill the bits left over. The second CSID in the CSID sequence is encoded in the least significant bit
position of the first CSID container in packed format (position K-1), the third CSID is encoded in
position K-2, and so on.

The last CSID in the CSID sequence is not required to have the REPLACE-CSID flavor. It can be
bound to any SRv6 endpoint behavior, including the behaviors described in and NEXT-
CSID flavor, as long as it meets the conditions defined in Section 6.

The structure of a SID with the REPLACE-CSID flavor is shown in Figure 3. The same structure is
also that of the CSID container for REPLACE-CSID in fully formed 128-bit SID format.

[RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 13

https://rfc-editor.org/rfc/rfc8986#section-4.15
https://rfc-editor.org/rfc/rfc8986#section-4.15
https://rfc-editor.org/rfc/rfc8986#section-4.15
https://rfc-editor.org/rfc/rfc8986#section-4.16.1
https://rfc-editor.org/rfc/rfc8986#section-4.16.2
https://rfc-editor.org/rfc/rfc8986#section-4.16.3

The structure of a CSID container for REPLACE-CSID in packed format is shown in Figure 4.

Figure 5 illustrates a compressed SID list as could be produced by an SR source node steering a
packet into an SR policy SID list of seven REPLACE-CSID flavor SIDs. All SIDs in this example
have a 48-bit Locator-Block, 32-bit combined Locator-Node and Function, and 48-bit Argument.
The SR source node compresses the SR policy SID list as a compressed SID list of three CSID
containers. The first CSID container is in fully formed 128-bit SID format. It carries a Locator-
Block, the first CSID, and the argument value zero. The second and third CSID containers are in
packed format. The second CSID container carries the second, third, fourth, and fifth CSIDs. The
third CSID container carries the sixth and seventh CSIDs. Since the SR source node does not use
the third CSID container at full capacity, it sets the 64 least significant bits to zero. The SR source
node sets the IPv6 DA with the value of the first CSID container, sets the first element in the SRH
Segment List with the value of the third CSID container, and sets the second element of the SRH
Segment List with the value of the second CSID container (the elements in the SRH Segment List
appear in reversed order of their processing, as specified in). Without
reduced SRH, the SR source node also writes the first CSID container as the third element of the
SRH Segment List.

Figure 3: Structure of a REPLACE-CSID Flavor SID (Scaled for a 48-Bit Locator‑Block, 32-Bit
Combined Locator-Node and Function, and 48-Bit Argument)

Locator-Block Locator-Node Argument
+ Function

LBL LNFL AL

Figure 4: Structure of a CSID Container for REPLACE-CSID Using a 32-Bit CSID Length (K = 4)

Fourth CSID Third CSID Second CSID First CSID
(position 0) (position 1) (position 2) (position 3)

LNFL LNFL LNFL LNFL

Section 4.1 of [RFC8754]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 14

https://rfc-editor.org/rfc/rfc8754#section-4.1

This document updates by allowing each entry in the SRH Segment List to be either an
IPv6 address or a REPLACE-CSID container in packed format. The SRv6 endpoint behaviors
specified herein ensure that this entry is never copied as is to the IPv6 header and that the
Destination Address field of the IPv6 header is always a valid SRv6 SID conforming to .

Figure 5: Compressed SID List of Seven REPLACE-CSID Flavor SIDs with a 48-Bit Locator‑Block, 32-
Bit Combined Locator-Node and Function, and 48-Bit Argument

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Locator-Block
1st CSID

1st CSID continued
0

First CSID container

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

5th CSID

4th CSID

3rd CSID

2nd CSID

Second CSID container

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0

7th CSID

6th CSID

Third CSID container

[RFC8754]

[RFC9602]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 15

The REPLACE-CSID flavor SIDs support any LBL, depending on the needs of the operator, as long
as it does not exceed 128-LNFL-ceiling(log_2(128/LNFL)) (ceiling(x) is the least integer greater
than or equal to x), so that enough bits remain available for the CSID and Argument. An
LBL of 48, 56, 64, 72, or 80 bits is recommended for easier reading in operation.

This document defines the REPLACE-CSID flavor for 16-bit and 32-bit CSID lengths (LNFL). An
implementation support a 32-bit CSID length for REPLACE-CSID flavor SIDs.

The AL for REPLACE-CSID flavor SIDs is equal to 128-LBL-LNFL. The index value is encoded in
the least significant X bits of the Argument, where X is computed as ceiling(log_2(128/LNFL)).

When processing an IPv6 packet that matches a FIB entry locally instantiated as a SID with the
REPLACE-CSID flavor, the SR segment endpoint node applies the procedure specified in the
following subsection that corresponds to the SID behavior. If the SID also has the PSP, USP, or
USD flavor, the procedure is modified as described in Section 4.2.8.

At a high level, at the start of a CSID sequence using the REPLACE-CSID flavor, the first CSID
container in fully formed 128-bit SID format is copied to the Destination Address of the IPv6
header. Then, for any SID with the REPLACE-CSID flavor, the SR segment endpoint node
determines the next SID of the SID list as follows. When an SRH is present, the SR segment
endpoint node decrements the index value in the Argument of the active SID if the index value is
not 0 or, if it is 0, decrements the Segments Left value in the SRH and sets the index value in the
Argument of the active SID to K-1. The updated index value indicates the position of the next
CSID within the CSID container in packed format at the "Segment List" index "Segments Left" in
the SRH. The SR segment endpoint node then constructs the next SID by copying this next CSID
to the bits that immediately follow the Locator-Block in the Destination Address field of the IPv6
header, thus overwriting the active SID Locator-Node and Function with those of the next CSID.
If no SRH is present, the SR segment endpoint node ignores the index value in the SID Argument
(except End.DT2M, see Section 4.2.7) and processes the upper-layer header as per . The
CSID sequence ends with a last CSID in the last CSID container that does not have the REPLACE-
CSID flavor, or with the special CSID value 0, or when reaching the end of the segment list,
whichever comes first.

[GKP94]

MUST

[RFC8986]

4.2.1. End with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End SID with
the REPLACE-CSID flavor, the SRH processing described in is executed
with the following modifications.

Line S02 of SRH processing in is replaced as follows.

Lines S09 to S15 are replaced by the following pseudocode.

Section 4.1 of [RFC8986]

Section 4.1 of [RFC8986]

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 16

https://rfc-editor.org/rfc/rfc8986#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-4.1

Notes:

DA.Arg.Index identifies the value contained in the bits [(128-
ceiling(log_2(128/LNFL)))..127] in the Destination Address of the IPv6
header.
Segment List[Segments Left][DA.Arg.Index] identifies the value contained
in the bits [DA.Arg.Index*LNFL..(DA.Arg.Index+1)*LNFL-1] in the SRH
Segment List entry at index Segments Left.

The upper-layer header processing described in is unchanged.

A rendering of the complete pseudocode is provided in Appendix A.6.

R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (floor(128/LNFL) - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

•

•

Section 4.1.1 of [RFC8986]

4.2.2. End.X with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.X SID
with the REPLACE-CSID flavor, the procedure described in is executed
with the following modifications.

Section 4.2 of [RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 17

https://rfc-editor.org/rfc/rfc8986#section-4.1.1
https://rfc-editor.org/rfc/rfc8986#section-4.2

The pseudocode in Section 4.2.1 of this document is modified by replacing lines R10 and R21 as
shown below.

Note: the variable J is defined in .

The SRH processing in is replaced with the resulting pseudocode. The
upper-layer header processing is unchanged.

A rendering of the complete pseudocode is provided in Appendix A.7.

R10. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.

R21. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.

Section 4.2 of [RFC8986]

Section 4.2 of [RFC8986]

4.2.3. End.T with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.T SID
with the REPLACE-CSID flavor, the procedure described in is executed
with the following modifications.

The pseudocode in Section 4.2.1 of this document is modified by replacing lines R10 and R21 as
shown below.

Note: the variable T is defined in .

The SRH processing in is replaced with the resulting pseudocode. The
upper-layer header processing is unchanged.

A rendering of the complete pseudocode is provided in Appendix A.8.

Section 4.3 of [RFC8986]

R10.1. Set the packet's associated FIB table to T.
R10.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

R21.1. Set the packet's associated FIB table to T.
R21.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

Section 4.3 of [RFC8986]

Section 4.3 of [RFC8986]

4.2.4. End.B6.Encaps with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an
End.B6.Encaps SID with the REPLACE-CSID flavor, the procedure described in

 is executed with the following modifications.
Section 4.13 of

[RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 18

https://rfc-editor.org/rfc/rfc8986#section-4.2
https://rfc-editor.org/rfc/rfc8986#section-4.2
https://rfc-editor.org/rfc/rfc8986#section-4.3
https://rfc-editor.org/rfc/rfc8986#section-4.3
https://rfc-editor.org/rfc/rfc8986#section-4.3
https://rfc-editor.org/rfc/rfc8986#section-4.13

The pseudocode in Section 4.2.1 of this document is modified by replacing lines R10 and R21 as
shown below.

Note: the variables A and B, as well as the values of the Payload Length, Traffic
Class, Flow Label, Hop Limit, and Next Header are defined in

.

The SRH processing in is replaced with the resulting pseudocode. The
upper-layer header processing is unchanged.

A rendering of the complete pseudocode is provided in Appendix A.9.

R10.1. Push a new IPv6 header with its own SRH containing B.
R10.2. Set the outer IPv6 SA to A.
R10.3. Set the outer IPv6 DA to the first SID of B.
R10.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R10.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.

R21.1. Push a new IPv6 header with its own SRH containing B.
R21.2. Set the outer IPv6 SA to A.
R21.3. Set the outer IPv6 DA to the first SID of B.
R21.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R21.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.

Section 4.13 of
[RFC8986]

Section 4.13 of [RFC8986]

4.2.5. End.B6.Encaps.Red with REPLACE-CSID

This is an optimization of the End.B6.Encaps with REPLACE-CSID behavior.

When processing an IPv6 packet that matches a FIB entry locally instantiated as an
End.B6.Encaps.Red SID with the REPLACE-CSID flavor, the procedure described in Section 4.2.4
of this document is executed with the modifications in .Section 4.14 of [RFC8986]

4.2.6. End.BM with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.BM SID
with the REPLACE-CSID flavor, the procedure described in is executed
with the following modifications.

The pseudocode in Section 4.2.1 of this document is modified by replacing lines R10 and R21 as
shown below.

Section 4.15 of [RFC8986]

R10.1. Push the MPLS label stack for B.
R10.2. Submit the packet to the MPLS engine for transmission.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 19

https://rfc-editor.org/rfc/rfc8986#section-4.13
https://rfc-editor.org/rfc/rfc8986#section-4.13
https://rfc-editor.org/rfc/rfc8986#section-4.14
https://rfc-editor.org/rfc/rfc8986#section-4.15

Note: the variable B is defined in .

The SRH processing in is replaced with the resulting pseudocode. The
upper-layer header processing is unchanged.

A rendering of the complete pseudocode is provided in Appendix A.10.

R21.1. Push the MPLS label stack for B.
R21.2. Submit the packet to the MPLS engine for transmission.

Section 4.15 of [RFC8986]

Section 4.15 of [RFC8986]

4.2.7. End.DX and End.DT with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.DX6,
End.DX4, End.DT6, End.DT4, End.DT46, End.DX2, End.DX2V, or End.DT2U SID with the REPLACE-
CSID flavor, the corresponding procedure described in Sections 4.4 through 4.11 of is
executed.

These SIDs differ from those defined in by the presence of an Argument as part of the
SID structure. The Argument value is ignored by the SR segment endpoint node.

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.DT2M
SID with the REPLACE-CSID flavor, the procedure described in is
executed with the following modification.

For any End.DT2M SID with the REPLACE-CSID flavor, the value of Arg.FE2 is 16 bits long. The
SR segment endpoint node obtains the value Arg.FE2 from the 16 most significant bits of
DA.Argument if DA.Arg.Index is zero or from the 16 least significant bits of the next position in
the current CSID container (Segment List[Segments Left][DA.Arg.Index-1]) otherwise
(DA.Arg.Index is non-zero).

[RFC8986]

[RFC8986]

Section 4.12 of [RFC8986]

USP:

4.2.8. Combination with PSP, USP, and USD Flavors

PSP: When combined with the REPLACE-CSID flavor, the additional PSP flavor instructions
defined in are inserted after lines R09 and R20 of the pseudocode in
Section 4.2.1, and the first line of the inserted instructions after R20 is modified as follows.

Note: Segment List[Segments Left][DA.Arg.Index-1] identifies the value
contained in the bits [(DA.Arg.Index-1)*LNFL..DA.Arg.Index*LNFL-1] in the
SRH Segment List entry at index Segments Left.

Section 4.16.1.2 of [RFC8986]

R20.1. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 20

https://rfc-editor.org/rfc/rfc8986#section-4.15
https://rfc-editor.org/rfc/rfc8986#section-4.15
https://rfc-editor.org/rfc/rfc8986#section-4.4
https://rfc-editor.org/rfc/rfc8986#section-4.11
https://rfc-editor.org/rfc/rfc8986#section-4.12
https://rfc-editor.org/rfc/rfc8986#section-4.16.1.2

USD:

When combined with the REPLACE-CSID flavor, the line S03 of the pseudocode in Section 4.2.1
are substituted by the USP flavor instructions S03.1 to S03.4 defined in

. Note that S03 is shown in the complete pseudocode in Appendix A.6.

The USD flavor defined in is unchanged when combined with
the REPLACE-CSID flavor.

Section 4.16.2 of
[RFC8986]

Section 4.16.3 of [RFC8986]

5. CSID Allocation
The CSID value of 0 is reserved. It is used to indicate the end of a CSID container.

In order to efficiently manage the CSID numbering space, a deployment may divide it into two
non-overlapping sub-spaces: a GIB and a LIB.

The CSID values that are allocated from the GIB have a global semantic within the Locator-Block,
while those that are allocated from the LIB have a local semantic on an SR segment endpoint
node and within the scope of the Locator-Block.

The concept of LIB is applicable to SRv6 and specifically to its NEXT-CSID and REPLACE-CSID
flavors. The shorter the CSID, the more benefit the LIB brings.

The opportunity to use these sub-spaces, their size, and their CSID allocation policy depends on
the CSID length relative to the size of the network (e.g., number of nodes, links, service routes).
Some guidelines for a typical deployment scenario are provided in the below subsections.

5.1. Global CSID
A global CSID is a CSID allocated from the GIB.

A global CSID identifies a segment defined at the Locator-Block level. The tuple (Locator-Block,
CSID) identifies the same segment across all nodes of the SR domain. A typical example is a
prefix segment bound to the End behavior.

A node can have multiple global CSIDs under the same Locator-Block (e.g., one per IGP flexible
algorithm ()). Multiple nodes may share the same global CSID (e.g., anycast).[RFC9350] [RFC4786]

5.2. Local CSID
A local CSID is a CSID allocated from the LIB.

A local CSID identifies a segment defined at the node level and within the scope of a particular
Locator-Block. The tuple (Locator-Block, CSID) identifies a different segment on each node of the
SR domain. A typical example is a non-routed Adjacency segment bound to the End.X behavior.

Let N1 and N2 be two different physical nodes of the SR domain and I a local CSID value: N1 may
allocate value I to SID S1 and N2 may allocate the same value I to SID S2.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 21

https://rfc-editor.org/rfc/rfc8986#section-4.16.2
https://rfc-editor.org/rfc/rfc8986#section-4.16.3

5.3. Recommended Installation of CSIDs in FIB
 defines how an SR segment endpoint node identifies a locally

instantiated SRv6 SID. To ensure that any valid argument value is accepted, an SR segment
endpoint node instantiating a NEXT-CSID or REPLACE-CSID flavor SID should install a
corresponding FIB entry that matches only the Locator and Function parts of the SID (i.e., with a
prefix length of LBL + LNL + FL).

In addition, an SR segment endpoint node instantiating NEXT-CSID flavor SIDs from both the GIB
and LIB may install combined "Global + Local" FIB entries to match a sequence of global and
local CSIDs in a single longest-prefix match (LPM) lookup.

For example, let us consider an SR segment endpoint node 10 instantiating the following two
NEXT-CSID flavor SIDs according to the CSID length, LBL, and GIB/LIB recommendations in this
section.

The SID 2001:db8:b1:10:: bound to the End behavior with the NEXT-CSID flavor is
instantiated from a GIB with:

LBL = 48 (Locator-Block value 0x20010db800b1),
LNL = 16 (Locator-Node value 0x0010),
FL = 0, and
AL = 64.

The SID 2001:db8:b1:f123:: bound to the End.X behavior for its local IGP adjacency 123
with the NEXT-CSID flavor is instantiated from a LIB with:

LBL = 48 (Locator-Block value 0x20010db800b1),
LNL = 0,
FL = 16 (Function value 0xf123), and
AL = 64.

For SID 2001:db8:b1:10::, Node 10 would install the FIB entry 2001:db8:b1:10::/64 bound to
the End SID with the NEXT-CSID flavor.

For SID 2001:db8:b1:f123::, Node 10 would install the FIB entry 2001:db8:b1:f123::/64
bound to the End.X SID for adjacency 123 with the NEXT-CSID flavor.

In addition, Node 10 may also install the combined FIB entry 2001:db8:b1:10:f123::/80
bound to the End.X SID for adjacency 123 with the NEXT-CSID flavor.

As another example, let us consider an SR segment endpoint node 20 instantiating the following
two REPLACE-CSID flavor SIDs according to the CSID length, LBL, and GIB/LIB recommendations
in this section.

2001:db8:b2:20:1:: from a GIB with LBL = 48, LNL = 16, FL = 16, AL = 48, and bound to the
End behavior with the REPLACE-CSID flavor.

Section 4.3 of [RFC8754]

•

◦
◦
◦
◦

•

◦
◦
◦
◦

•

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 22

https://rfc-editor.org/rfc/rfc8754#section-4.3

2001:db8:b2:20:123:: from a GIB with LBL = 48, LNL = 16, FL = 16, AL = 48, and bound to
the End.X behavior for its local IGP adjacency 123 with the REPLACE-CSID flavor.

For SID 2001:db8:b2:20:1::, Node 20 would install the FIB entry 2001:db8:b2:20:1::/80
bound to the End SID with the REPLACE-CSID flavor.

For SID 2001:db8:b2:20:123::, Node 20 would install the FIB entry 2001:db8:b2:20:123::/80
bound to the End.X SID for adjacency 123 with the REPLACE-CSID flavor.

•

6. SR Source Node
An SR source node may learn from a control plane protocol (see Section 8) or local configuration
the SIDs that it can use in a segment list, along with their respective SRv6 endpoint behavior,
structure, and any other relevant attribute (e.g., the set of L3 adjacencies associated with an
End.X SID).

6.1. SID Validation for Compression
As part of the compression process or as a preliminary step, the SR source node validate
the SID structure of each SID of this document in the segment list. The SR source node does so
regardless of whether the segment list is explicitly configured, locally computed, or advertised
by a controller (e.g., via BGP or PCEP).

A SID structure is valid for compression if it meets all the following conditions:

The LBL is not 0.
The LNFL is not 0.
The AL is equal to 128-LBL-LNL-FL.

When compressing a SID list, the SR source node treat an invalid SID structure as
unknown. A SID with an unknown SID structure is not compressible.

Section 8 discusses how the SIDs of this document and their structure can be advertised to the SR
source node through various control plane protocols. The SID structure may also be learned
through configuration or other management protocols. The details of such mechanisms are
outside the scope of this document.

MUST

[BGP-SR-Policy] [RFC9603]

•
•
•

MUST

6.2. Segment List Compression
An SR source node compress a SID list when it includes NEXT-CSID and/or REPLACE-CSID
flavor SIDs to reduce the packet header length.

It is out of the scope of this document to describe the mechanism through which an
uncompressed SID list is derived, since such a mechanism may include a wide range of
considerations independent of compression (e.g., minimizing a specific metric, excluding certain
links, or providing a loop-free fast-reroute path). As general guidance for implementation or
future specification, such a mechanism should aim to select the combination of SIDs that would

MAY

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 23

result in the shortest compressed SID list. For example, by selecting a CSID flavor SID over an
equivalent non-CSID flavor SID or by consistently selecting SIDs of the same CSID flavor within
each routing domain.

The SID list that the SR source node pushes onto the packet comply with the rules in
Sections 6.3 and 6.4 and express the same list of segments as the original SID list. If these rules
are not followed, the packet may get dropped or misrouted.

If an SR source node chooses to compress the SID list, one method is described below for
illustrative purposes. Any other method producing a compressed SID list of equal or shorter
length than the uncompressed SID list be used.

This method walks the uncompressed SID list and compresses each series of consecutive NEXT-
CSID flavor SIDs and each series of consecutive REPLACE-CSID flavor SIDs.

When the compression method encounters a series of one or more consecutive
compressible NEXT-CSID flavor SIDs, it compresses the series as follows. A SID with the
NEXT-CSID flavor is compressible if its structure is known to the SR source node and its
Argument value is 0.

MUST

MAY

•

S01. Initialize a NEXT-CSID container equal to the first SID in
 the series and initialize the remaining capacity of the
 CSID container to the AL of that SID
S02. For each subsequent SID in the series {
S03. If the current SID Locator-Block matches that of the CSID
 container and the current SID LNFL is lower than or equal
 to the remaining capacity of the NEXT-CSID container {
S04. Copy the current SID Locator-Node and Function to the
 most significant remaining Argument bits of the
 NEXT-CSID container and decrement the remaining
 capacity by LNFL
S05. } Else {
S06. Push the NEXT-CSID container onto the compressed SID list
S07. Initialize a new NEXT-CSID container equal to the current
 SID in the series and initialize the remaining capacity
 of the NEXT-CSID container to the AL of that SID
S08. } // End If
S09. } // End For
S10. If at least one SID remains in the uncompressed SID list
 (following the series of compressible NEXT-CSID flavor
 SIDs) {
S11. Set S to the next SID in the uncompressed SID list
S12. If S is advertised with a SID structure, and the
 Locator-Block of S matches that of the NEXT-CSID
 container, and the sum of the Locator-Node, Function, and
 Argument length of S is lower than or equal to the
 remaining capacity of the CSID container {
S13. Copy the Locator-Node, Function, and Argument of S to the
 most significant remaining Argument bits of the CSID
 container
S14. } // End If
S15. } // End If
S16. Push the NEXT-CSID container onto the compressed SID list

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 24

When the compression method encounters a series of REPLACE-CSID flavor SIDs of the same
CSID length in the uncompressed SID list, it compresses the series as per the following high-
level pseudocode. A compression checking function ComCheck(F, S) is defined to check if two
SIDs F and S share the same SID structure and Locator-Block value, and if S has either no
Argument or an Argument with value 0. If the check passes, then ComCheck(F,S) returns
true.

Note: When the last CSID is an End.DT2M SID with the REPLACE-CSID flavor, if
there are 0 or at least two CSID positions left in the current REPLACE-CSID
container, the CSID is encoded as described above and the value of the Arg.FE2
argument is placed in the 16 least significant bits of the next CSID position.
Otherwise (if there is only one CSID position left in the current REPLACE-CSID
container), the current REPLACE-CSID container is pushed onto the SID list (the
value of the CSID position 0 remains zero) and the End.DT2M SID with the REPLACE-
CSID flavor is encoded in full SID format with the value of the Arg.FE2 argument in
the 16 most significant bits of the SID Argument.

•

S01. Initialize a REPLACE-CSID container in full SID format equal
 to the first SID in the series
S02. Push the REPLACE-CSID container onto the compressed SID list
S03. Initialize a new REPLACE-CSID container in packed format if
 there are more than one SIDs and initialize the remaining
 capacity of the REPLACE-CSID container to 128 bits
S04. For each subsequent SID in the uncompressed SID list {
S05. Set S to the current SID in the uncompressed SID list
S06. If ComCheck(First SID, S) {
S07. If the LNFL of S is lower than or equal to
 the remaining capacity of the REPLACE-CSID container {
S08. Copy the Locator-Node and Function of S to the least
 significant remaining bits of the REPLACE-CSID
 container and decrement the remaining capacity by
 LNFL // Note
S09. } Else {
S10. Push the REPLACE-CSID container onto the compressed SID
 list
S11. Initialize a new REPLACE-CSID container in packed
 format with all bits set to 0
S12. Copy the Locator-Node and Function of S to the least
 significant remaining bits of the REPLACE-CSID
 container and decrement the remaining capacity by
 LNFL // Note
S13. }
S14. If S is not a REPLACE-CSID flavor SID, then break
S15. } Else {
S16. Break
S17. } // End If
S18. } // End For
S19. Push the REPLACE-CSID container (if it is not empty) onto the
 compressed SID list

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 25

In all remaining cases (i.e., when the compression method encounters a SID in the
uncompressed SID list that is not handled by any of the previous subroutines), it pushes this SID
as is onto the compressed SID list.

Regardless of how a compressed SID list is produced, the SR source node writes it in the IPv6
packet as described in Sections 4.1 and 4.1.1 of . The text is reproduced below for
reference.

A source node steers a packet into an SR Policy. If the SR Policy results in a Segment List
containing a single segment, and there is no need to add information to the SRH flag or
add TLV; the DA is set to the single Segment List entry, and the SRH be omitted.

When needed, the SRH is created as follows:

The Next Header and Hdr Ext Len fields are set as specified in .

The Routing Type field is set to 4.

The DA of the packet is set with the value of the first segment.

The first element of the SRH Segment List is the ultimate segment. The second element
is the penultimate segment, and so on.

The Segments Left field is set to n-1, where n is the number of elements in the SR Policy.

The Last Entry field is set to n-1, where n is the number of elements in the SR Policy.

TLVs (including HMAC) may be set according to their specification.

The packet is forwarded toward the packet's Destination Address (the first segment).

When a source does not require the entire SID list to be preserved in the SRH, a reduced
SRH may be used.

A reduced SRH does not contain the first segment of the related SR Policy (the first
segment is the one already in the DA of the IPv6 header), and the Last Entry field is set
to n-2, where n is the number of elements in the SR Policy.

[RFC8754]

MAY

[RFC8200]

6.3. Rules for Segment Lists Containing NEXT-CSID Flavor SIDs
If a Destination Options header would follow an SRH with a segment list of more than one
segment compressed as a single NEXT-CSID container, the SR source node omit
the SRH.
When the last Segment List entry (index 0) in the SRH is a NEXT-CSID container representing
more than one segment and the segment S preceding the first segment of this NEXT-CSID
container in the segment list has the PSP flavor, then the PSP operation is performed at the

1.
MUST NOT

2.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 26

https://rfc-editor.org/rfc/rfc8754#section-4.1
https://rfc-editor.org/rfc/rfc8754#section-4.1.1

SR segment endpoint node of S. If the PSP behavior should instead be performed at the
penultimate segment along the path, then the SR source node compress the
ultimate SID of the SID list into a NEXT-CSID container.
If a Destination Options header would follow an SRH with a last Segment List entry being a
NEXT-CSID container representing more than one segment, the SR source node ensure
that the PSP operation is not performed before the penultimate SR segment endpoint node
along the path.
When the Argument of a NEXT-CSID container is not used to full capacity, the remaining
least significant bits of that Argument be set to 0.

MUST NOT

3.
MUST

4.
MUST

6.4. Rules for Segment Lists Containing REPLACE-CSID Flavor SIDs
All SIDs compressed in a REPLACE-CSID sequence share the same Locator-Block and
the same compression scheme.
All SIDs except the last one in a CSID sequence for REPLACE-CSID have the REPLACE-
CSID flavor. If the last REPLACE-CSID container is fully filled (i.e., the last CSID is at position
0 in the REPLACE-CSID container) and the last SID in the CSID sequence is not the last
segment in the segment list, the last SID in the CSID sequence have the REPLACE-
CSID flavor.
When a REPLACE-CSID flavor CSID is present as the last SID in a container that is not the last
Segment List entry (index 0) in the SRH, the next element in the SID list be a REPLACE-
CSID container in packed format carrying at least one CSID.

The SR source node determines the compression scheme of REPLACE-CSID flavor SIDs as follows.

When receiving a SID advertisement for a REPLACE-CSID flavor SID with LNL = 16, FL = 0, AL =
128-LBL-LNFL, and all zeros as the value of the Argument, the SR source node marks both the SID
and its locator as using 16-bit compression. All other SIDs allocated from this locator with LNL =
16, FL = 16, AL = 128-LBL-LNFL, and all zeros as the value of the Argument are also marked as
using 16-bit compression. When receiving a SID advertisement for a REPLACE-CSID flavor SID
with LNFL = 32, AL = 128-LBL-LNFL, and all zeros as the value of the Argument, the SR source
node marks both the SID and its locator as using 32-bit compression.

1. MUST

2. MUST

MUST NOT

3.
MUST

6.5. Upper-Layer Checksums
The Destination Address used in the IPv6 pseudo-header () is that of the
ultimate destination.

At the SR source node, that address will be the Destination Address as it is expected to be
received by the ultimate destination. When the last element in the compressed SID list is a CSID
container, this address can be obtained from the last element in the uncompressed SID list or by
repeatedly applying the segment behavior as described in Section 9.4. This applies regardless of
whether an SRH is present in the IPv6 packet or is omitted.

At the ultimate destination(s), that address will be in the Destination Address field of the IPv6
header.

Section 8.1 of [RFC8200]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 27

https://rfc-editor.org/rfc/rfc8200#section-8.1

7. Inter-Domain Compression
Some SRv6 traffic may need to cross multiple routing domains, such as different Autonomous
Systems (ASes) or different routing areas within an SR domain. Different routing domains may
use different addressing schema and Locator-Blocks.

A property of a CSID sequence is that all CSIDs in the sequence share the same Locator-Block.
Therefore, a segment list that spans multiple routing domains using different Locator-Blocks
may need a separate CSID sequence for each domain.

This section defines a solution to improve the efficiency of CSID compression in multi-domain
environments by enabling a CSID sequence to combine CSIDs having different Locator-Blocks.

The solution leverages two new SRv6 endpoint behaviors, "Endpoint with SRv6 Locator-Block
Swap" ("End.LBS" for short) and "Endpoint with L3 cross-connect and SRv6 Locator-Block
Swap" ("End.XLBS" for short), that enable modifying the Locator-Block for the next CSID in the
CSID sequence at the routing domain boundary.

7.1. End.LBS: Locator-Block Swap
The End.LBS behavior is a variant of the End behavior that modifies the Locator-Block of the
active CSID sequence. This document defines the End.LBS behavior with the NEXT-CSID flavor
and the End.LBS behavior with the REPLACE-CSID flavor.

An End.LBS SID is used to transition to a new Locator-Block when the routing domain boundary
is on the SR segment endpoint node.

Each instance of an End.LBS SID is associated with a target Locator-Block B2/m, where B2 is an
IPv6 address prefix and m is the associated prefix length. The original and target Locator-Blocks
can have different prefix lengths as long as the new Destination Address formed by combining
the target Locator-Block with the Locator-Node, Function, and Argument as described in the
pseudocode of Sections 7.1.1 and 7.1.2 is a valid IPv6 address. The target Locator-Block is a local
property of the End.LBS SID on the SR segment endpoint node.

Note: a local SID property is an attribute associated with the SID when it is
instantiated on the SR segment endpoint node. When the SR segment endpoint node
identifies the Destination Address of a received packet as a locally instantiated SID,
it also retrieves any local property associated with this SID. Other examples of local
SID properties include the set of L3 adjacencies of an End.X SID (

) and the lookup table of an End.DT6 SID ().

The means by which an SR source node learns the target Locator-Block associated with an
End.LBS SID are outside the scope of this document. As examples, it could be learned via
configuration or signaled by a controller.

Section 4.2 of
[RFC8986] Section 4.6 of [RFC8986]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 28

https://rfc-editor.org/rfc/rfc8986#section-4.2
https://rfc-editor.org/rfc/rfc8986#section-4.6

7.1.1. End.LBS with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.LBS SID
with the NEXT-CSID flavor and associated with the target Locator-Block B2/m, the SR segment
endpoint node applies the procedure specified in Section 4.1.1 with the lines N05 to N06 replaced
as follows.

N05.1. Initialize an IPv6 address A equal to B2.
N05.2. Copy DA.Argument into the bits [m..(m+AL-1)] of A.
N06. Copy A to the Destination Address of the IPv6 header.

7.1.2. End.LBS with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.LBS SID
with the REPLACE-CSID flavor and associated with the target Locator-Block B2/m, the SR
segment endpoint node applies the procedure specified in Section 4.2.1 with the line R20
replaced as follows.

R20.1. Initialize an IPv6 address A equal to B2.
R20.2. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [m..m+LNFL-1] of A.
R20.3. Write DA.Arg.Index into the bits
 [(128-ceiling(log_2(128/LNFL)))..127] of A.
R20.4. Copy A to the Destination Address of the IPv6 header.

7.2. End.XLBS: L3 Cross-Connect and Locator-Block Swap
The End.XLBS behavior is a variant of the End.X behavior that modifies the Locator-Block of the
active CSID sequence. This document defines the End.XLBS behavior with the NEXT-CSID flavor
and the End.XLBS behavior with the REPLACE-CSID flavor.

An End.XLBS SID is used to transition to a new Locator-Block when the routing domain
boundary is on a link adjacent to the SR segment endpoint node.

Each instance of an End.XLBS SID is associated with a target Locator-Block B2/m and a set, J, of
one or more L3 adjacencies. The original and target Locator-Blocks can have different prefix
lengths as long as the new Destination Address formed by combining the target Locator-Block
with the Locator-Node, Function, and Argument as described in the pseudocode of Sections 7.2.1
and 7.2.2 is a valid IPv6 address. The target Locator-Block and set of adjacencies are local
properties of the End.XLBS SID on the SR segment endpoint node.

The means by which an SR source node learns the target Locator-Block associated with an
End.XLBS SID are outside the scope of this document. As examples, it could be learned via
configuration or signaled by a controller.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 29

7.2.1. End.XLBS with NEXT-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.XLBS SID
with the NEXT-CSID flavor and associated with the target Locator-Block B2/m, the SR segment
endpoint node applies the procedure specified in Section 4.1.2 with the lines N05 to N06 (of the
pseudocode in Section 4.1.1) replaced as follows.

N05.1. Initialize an IPv6 address A equal to B2.
N05.2. Copy DA.Argument into the bits [m..(m+AL-1)] of A.
N06. Copy A to the Destination Address of the IPv6 header.

7.2.2. End.XLBS with REPLACE-CSID

When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.XLBS SID
with the REPLACE-CSID flavor and associated with the target Locator-Block B2/m, the SR
segment endpoint node applies the procedure specified in Section 4.2.2 with the line R20 (of the
pseudocode in Section 4.2.1) replaced as follows.

R20.1. Initialize an IPv6 address A equal to B2.
R20.2. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [m..m+LNFL-1] of A.
R20.3. Write DA.Arg.Index into the bits
 [(128-ceiling(log_2(128/LNFL)))..127] of A.
R20.4. Copy A to the Destination Address of the IPv6 header.

8. Control Plane
 provides an overview of the control plane protocols used for signaling of

the SRv6 endpoint behaviors introduced by that document, including the base SRv6 endpoint
behaviors that are extended in the present document.

The CSID-flavored behaviors introduced by this document are advertised in the same manner as
their base SRv6 endpoint behaviors using the SRv6 extensions for various routing protocols,
such as:

IS-IS
OSPFv3
BGP , ,
BGP-LS
PCEP

The SR segment endpoint node set the SID Argument bits to 0 when advertising a locally
instantiated SID of this document in the routing protocol (e.g., IS-IS , OSPF ,
or BGP-LS).

Section 8 of [RFC8986]

• [RFC9352]
• [RFC9513]
• [RFC9252] [RFC9514] [BGP-SR-Policy]
• [BGP-LS-SR-Policy]
• [RFC9603]

MUST
[RFC9352] [RFC9513]

[RFC9514]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 30

https://rfc-editor.org/rfc/rfc8986#section-8

Signaling the SRv6 SID Structure is for all the SIDs introduced in this document. It is
used by an SR source node to compress a SID list as described in Section 6. The node initiating
the SID advertisement set the length values in the SRv6 SID Structure to match the format
of the SID on the SR segment endpoint node. For example, for a SID of this document
instantiated from a /48 SRv6 SID block and a /64 Locator, and having a 16-bit Function, the SRv6
SID Structure advertisement carries the following values.

LBL: 48
LNL: 16
FL: 16
AL: 48 (= 128-48-16-16)

A local CSID may be advertised in the control plane individually and/or in combination with a
global CSID instantiated on the same SR segment endpoint node, with the End behavior, and the
same Locator-Block and flavor as the local CSID. A combined global and local CSID is advertised
as follows:

The SID Locator-Block is that shared by the global and local CSIDs
The SID Locator-Node is that of the global CSID
The SID Function is that of the local CSID
The SID AL is equal to 128-LBL-LNL-FL and the SID Argument value is 0
All other attributes of the SID (e.g., SRv6 endpoint behavior or algorithm) are those of the
local CSID

The combined advertisement of local CSIDs with a global CSID is needed in particular for control
plane protocols mandating that the SID is a subnet of a locator advertised in the same protocol
(e.g., and for advertising Adjacency SIDs in IS-IS
and OSPFv3, respectively).

For a segment list computed by a controller and signaled to an SR source node (e.g., via BGP
 or PCEP), the controller provides the ordered segment list comprising

the uncompressed SIDs, with their respective behavior and structure, to the SR source node. The
SR source node may then compress the SID list as described in Section 6.

When a node receives an advertisement of a SID of this document that it does not support, it
handles the advertisement as described in the corresponding control plane specification (e.g.,
Sections 7.2, 8.1, and 8.2 of , Sections 8, 9.1, and 9.2 of , and

).

REQUIRED

MUST

•
•
•
•

•
•
•
•
•

Section 8 of [RFC9352] Section 9 of [RFC9513]

[BGP-SR-Policy] [RFC9603]

[RFC9352] [RFC9513] Section 3.1 of
[RFC9252]

9. Operational Considerations

9.1. Flavor, Block, and CSID Length
SRv6 is intended for use in a variety of networks that require different prefix lengths and SID
numbering spaces. Each of the two flavors introduced in this document comes with its own
recommendations for Locator-Block and CSID length, as specified in Sections 4.1 and 4.2. These

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 31

https://rfc-editor.org/rfc/rfc9352#section-8
https://rfc-editor.org/rfc/rfc9513#section-9
https://rfc-editor.org/rfc/rfc9352#section-7.2
https://rfc-editor.org/rfc/rfc9352#section-8.1
https://rfc-editor.org/rfc/rfc9352#section-8.2
https://rfc-editor.org/rfc/rfc9513#section-8
https://rfc-editor.org/rfc/rfc9513#section-9.1
https://rfc-editor.org/rfc/rfc9513#section-9.2
https://rfc-editor.org/rfc/rfc9252#section-3.1

flavors are best suited for different environments, depending on the requirements of the
network. For instance, larger CSID lengths may be more suitable for networks requiring ample
SID numbering space, while smaller CSID lengths are better for compression efficiency. The two
compression flavors allow the compressed segment list encoding to adapt to a range of
requirements, with support for multiple compression levels. Network operators can choose the
flavor that best suits their use case, deployment design, and network scale.

Both CSID flavors can coexist in the same SR domain, on the same SR segment endpoint node,
and even in the same segment list. However, operators should generally avoid instantiating SIDs
of different CSID flavors within the same routing domain or Locator-Block since these SIDs have
different length and allocation recommendations (see Sections 4.1, 4.2, and 9.2). In a multi-
domain deployment, different flavors may be used in different routing domains of the SR
domain.

A deployment should use consistent LBLs and CSID lengths for all SIDs within a routing domain.
Heterogeneous lengths, while possible, may impact the compression efficiency.

The compressed segment list encoding works with various Locator-Block allocations. For
example, each routing domain within the SR domain can be allocated a /48 Locator-Block from a
global IPv6 block available to the operator or from a prefix allocated to SRv6 SIDs as discussed in

.Section 5 of [RFC9602]

9.2. GIB/LIB Usage
GIB and LIB usage is a local implementation and/or configuration decision; however, some
guidelines for determining usage for specific SRv6 endpoint behaviors and recommendations
are provided.

The GIB number space is shared among all SR segment endpoint nodes using SRv6 locators
under a Locator-Block space. The more SIDs assigned from this space, per node, the faster it is
exhausted. Therefore, its use is prioritized for global segments, such as SIDs that identify a node.

The LIB number space is unique per node. Each node can fully utilize the entire LIB number
space without consideration for assignments at other nodes. Therefore, its use is prioritized for
local segments, such as SIDs that identify services (of which there may be many) at nodes, cross-
connects, or adjacencies.

While a longer CSID length permits more flexibility in which SRv6 endpoint behaviors may be
assigned from the GIB, it also reduces the compression efficiency.

Given the previous Locator-Block and CSID length recommendations, the following GIB/LIB
usage is recommended:

NEXT-CSID:

GIB: End
LIB: End.X, End.T, End.DT4/6/46/2U/2M, End.DX4/6/2/2V (including large-scale pseudowire),
End.B6.Encaps, End.B6.Encaps.Red, End.BM, End.LBS, and End.XLBS

•

◦
◦

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 32

https://rfc-editor.org/rfc/rfc9602#section-5

REPLACE-CSID:

GIB: End, End.X, End.T, End.DT4/6/46/2U/2M, End.DX4/6/2/2V, End.B6.Encaps,
End.B6.Encaps.Red, End.BM, End.LBS, and End.XLBS
LIB: End.DX2/2V for large-scale pseudowire

Any other allocation is possible but may lead to a suboptimal use of the CSID numbering space.

•

◦

◦

9.3. Pinging a SID
An SR source node may ping an SRv6 SID by sending an ICMPv6 echo request packet destined to
the SRv6 SID. The SR source node may ping the target SID with a SID list comprising only that
target SID or with a longer one that comprises two or more SIDs. In that case, the target SID is
the last element in the SID list. This operation is illustrated in .

When pinging a SID of this document, the SR source node construct the IPv6 packet as
described in Section 6, including computing the ICMPv6 checksum as described in Section 6.5.

In particular, when pinging a SID of this document with a SID list comprising only the target SID,
the SR source node places the SID with Argument value 0 in the Destination Address of the
ICMPv6 echo request and computes the ICMPv6 checksum using this SID as the Destination
Address in the IPv6 pseudo-header. The Argument value 0 allows the SID SR segment endpoint
node (Section 4) to identify itself as the ultimate destination of the packet and process the
ICMPv6 payload. Therefore, any existing IPv6 ping implementation can originate ICMP echo
requests to a NEXT-CSID or REPLACE-CSID flavor SID with a SID list comprising only the target
SID, provided that the user ensures that the SID Argument is 0.

Appendix A.1.2 of [RFC9259]

MUST

9.4. ICMP Error Processing
When an IPv6 node encounters an error while processing a packet, it may report that error by
sending an IPv6 error message to the packet source with an enclosed copy of the invoking
packet. For the source of an invoking packet to process the ICMP error message, the ultimate
Destination Address of the IPv6 header may be required.

 defines the logic that an SR source node follows to determine the
ultimate destination of an invoking packet containing an SRH.

For an SR source node that supports the compressed segment list encoding defined in this
document, the logic to determine the ultimate destination is generalized as follows.

If the Destination Address of the invoking IPv6 packet matches a known SRv6 SID, modify the
invoking IPv6 packet by applying the SRv6 endpoint behavior associated with the matched
SRv6 SID;
Repeat until the application of the SRv6 endpoint behavior would result in the processing of
the upper-layer header.

The Destination Address of the resulting IPv6 packet may be used as the ultimate destination of
the invoking IPv6 packet.

Section 5.4 of [RFC8754]

•

•

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 33

https://rfc-editor.org/rfc/rfc9259#appendix-A.1.2
https://rfc-editor.org/rfc/rfc8754#section-5.4

Since the SR source node that needs to determine the ultimate destination is the same node that
originally built the SID list in the invoking packet, it can perform this operation for all the SIDs
in the packet.

10. Applicability to Other SRv6 Endpoint Behaviors
Future documents may extend the applicability of the NEXT-CSID and REPLACE-CSID flavors to
other SRv6 endpoint behaviors.

For an SRv6 endpoint behavior that can be used before the last position of a segment list, a CSID
flavor is defined by reproducing the same logic as described in Sections 4.1 and 4.2 to determine
the next SID in the SID list.

11. Security Considerations
 discusses the security considerations for Segment Routing.

 describes the intra-SR-domain deployment model and how to secure it.
 describes the threats applicable to SRv6 and how to mitigate them.

 discusses the security considerations applicable to the SRv6 network
programming framework, as well as the SR source node and SR segment endpoint node
behaviors that it defines.

This document introduces two new flavors, NEXT-CSID and REPLACE-CSID, for some of the SRv6
endpoint behaviors defined in and a method by which an SR source node may
leverage the SIDs of these flavors to produce a compressed segment list encoding.

This document also introduces two new SRv6 endpoint behaviors, End.LBS and End.XLBS, to
preserve the efficiency of CSID compression in multi-domain environments.

An SR source node constructs an IPv6 packet with a compressed segment list encoding as
defined in Sections 3.1 and 4.1 of and . The paths that an SR
source node may enforce using a compressed segment list encoding are the same, from a
topology and service perspective, as those that an SR source node could enforce using the SIDs of

.

An SR segment endpoint node processes an IPv6 packet matching a locally instantiated SID as
defined in , with the pseudocode modifications in Section 4 of this document. These
modifications change how the SR segment endpoint node determines the next SID in the packet
but not the semantic of either the active or the next SID. For example, an adjacency segment
instantiated with the End.X behavior remains an adjacency segment regardless of whether it
uses the base End.X behavior defined in or a CSID flavor of that
behavior. This document does not introduce any new SID semantic.

Any other transit node processes the packet as described in .

Section 8 of [RFC8402]

Section 5 of [RFC8754]
Section 7 of [RFC8754]

Section 9 of [RFC8986]

[RFC8986]

[RFC8754] Section 5 of [RFC8986]

[RFC8986]

[RFC8986]

Section 4.2 of [RFC8986]

Section 4.2 of [RFC8754]

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 34

https://rfc-editor.org/rfc/rfc8402#section-8
https://rfc-editor.org/rfc/rfc8754#section-5
https://rfc-editor.org/rfc/rfc8754#section-7
https://rfc-editor.org/rfc/rfc8986#section-9
https://rfc-editor.org/rfc/rfc8754#section-3.1
https://rfc-editor.org/rfc/rfc8754#section-4.1
https://rfc-editor.org/rfc/rfc8986#section-5
https://rfc-editor.org/rfc/rfc8986#section-4.2
https://rfc-editor.org/rfc/rfc8754#section-4.2

This document defines a new method of encoding the SIDs inside a SID list at the SR source node
(Section 6) and decoding them at the SR segment endpoint node (see Sections 4 and 7), but it
does not change how the SID list itself is encoded in the IPv6 packet nor the semantic of any
segment that it comprises. Therefore, this document is subject to the same security
considerations that are discussed in , , and .[RFC8402] [RFC8754] [RFC8986]

12. IANA Considerations

12.1. SRv6 Endpoint Behaviors
IANA has updated the reference of the following registrations from the "SRv6 Endpoint
Behaviors" registry under the "Segment Routing" registry group (

) to point to this document and transfer change control to the
IETF.

<https://www.iana.org/
assignments/segment-routing/>

Value Description Reference

43 End with NEXT-CSID RFC 9800

44 End with NEXT-CSID & PSP RFC 9800

45 End with NEXT-CSID & USP RFC 9800

46 End with NEXT-CSID, PSP & USP RFC 9800

47 End with NEXT-CSID & USD RFC 9800

48 End with NEXT-CSID, PSP & USD RFC 9800

49 End with NEXT-CSID, USP & USD RFC 9800

50 End with NEXT-CSID, PSP, USP & USD RFC 9800

52 End.X with NEXT-CSID RFC 9800

53 End.X with NEXT-CSID & PSP RFC 9800

54 End.X with NEXT-CSID & USP RFC 9800

55 End.X with NEXT-CSID, PSP & USP RFC 9800

56 End.X with NEXT-CSID & USD RFC 9800

57 End.X with NEXT-CSID, PSP & USD RFC 9800

58 End.X with NEXT-CSID, USP & USD RFC 9800

59 End.X with NEXT-CSID, PSP, USP & USD RFC 9800

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 35

https://www.iana.org/assignments/segment-routing/
https://www.iana.org/assignments/segment-routing/

Value Description Reference

85 End.T with NEXT-CSID RFC 9800

86 End.T with NEXT-CSID & PSP RFC 9800

87 End.T with NEXT-CSID & USP RFC 9800

88 End.T with NEXT-CSID, PSP & USP RFC 9800

89 End.T with NEXT-CSID & USD RFC 9800

90 End.T with NEXT-CSID, PSP & USD RFC 9800

91 End.T with NEXT-CSID, USP & USD RFC 9800

92 End.T with NEXT-CSID, PSP, USP & USD RFC 9800

93 End.B6.Encaps with NEXT-CSID RFC 9800

94 End.B6.Encaps.Red with NEXT-CSID RFC 9800

95 End.BM with NEXT-CSID RFC 9800

96 End.LBS with NEXT-CSID RFC 9800

97 End.XLBS with NEXT-CSID RFC 9800

101 End with REPLACE-CSID RFC 9800

102 End with REPLACE-CSID & PSP RFC 9800

103 End with REPLACE-CSID & USP RFC 9800

104 End with REPLACE-CSID, PSP & USP RFC 9800

105 End.X with REPLACE-CSID RFC 9800

106 End.X with REPLACE-CSID & PSP RFC 9800

107 End.X with REPLACE-CSID & USP RFC 9800

108 End.X with REPLACE-CSID, PSP & USP RFC 9800

109 End.T with REPLACE-CSID RFC 9800

110 End.T with REPLACE-CSID & PSP RFC 9800

111 End.T with REPLACE-CSID & USP RFC 9800

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 36

Value Description Reference

112 End.T with REPLACE-CSID, PSP & USP RFC 9800

114 End.B6.Encaps with REPLACE-CSID RFC 9800

115 End.BM with REPLACE-CSID RFC 9800

116 End.DX6 with REPLACE-CSID RFC 9800

117 End.DX4 with REPLACE-CSID RFC 9800

118 End.DT6 with REPLACE-CSID RFC 9800

119 End.DT4 with REPLACE-CSID RFC 9800

120 End.DT46 with REPLACE-CSID RFC 9800

121 End.DX2 with REPLACE-CSID RFC 9800

122 End.DX2V with REPLACE-CSID RFC 9800

123 End.DT2U with REPLACE-CSID RFC 9800

124 End.DT2M with REPLACE-CSID RFC 9800

127 End.B6.Encaps.Red with REPLACE-CSID RFC 9800

128 End with REPLACE-CSID & USD RFC 9800

129 End with REPLACE-CSID, PSP & USD RFC 9800

130 End with REPLACE-CSID, USP & USD RFC 9800

131 End with REPLACE-CSID, PSP, USP & USD RFC 9800

132 End.X with REPLACE-CSID & USD RFC 9800

133 End.X with REPLACE-CSID, PSP & USD RFC 9800

134 End.X with REPLACE-CSID, USP & USD RFC 9800

135 End.X with REPLACE-CSID, PSP, USP & USD RFC 9800

136 End.T with REPLACE-CSID & USD RFC 9800

137 End.T with REPLACE-CSID, PSP & USD RFC 9800

138 End.T with REPLACE-CSID, USP & USD RFC 9800

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 37

Value Description Reference

139 End.T with REPLACE-CSID, PSP, USP & USD RFC 9800

140 End.LBS with REPLACE-CSID RFC 9800

141 End.XLBS with REPLACE-CSID RFC 9800

Table 1: SRv6 Endpoint Behaviors Registration List

13. References

[RFC2119]

[RFC8174]

[RFC8200]

[RFC8402]

[RFC8754]

[RFC8986]

13.1. Normative References

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

 and , ,
, , , July 2017,

.

, , , , , and
, , , , July

2018, .

, , , , , and ,
, , , March

2020, .

, , , , , and ,
, ,

, February 2021, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

Filsfils, C., Ed. Previdi, S., Ed. Ginsberg, L. Decraene, B. Litkowski, S. R.
Shakir "Segment Routing Architecture" RFC 8402 DOI 10.17487/RFC8402

<https://www.rfc-editor.org/info/rfc8402>

Filsfils, C., Ed. Dukes, D., Ed. Previdi, S. Leddy, J. Matsushima, S. D. Voyer
"IPv6 Segment Routing Header (SRH)" RFC 8754 DOI 10.17487/RFC8754

<https://www.rfc-editor.org/info/rfc8754>

Filsfils, C., Ed. Camarillo, P., Ed. Leddy, J. Voyer, D. Matsushima, S. Z. Li
"Segment Routing over IPv6 (SRv6) Network Programming" RFC 8986 DOI
10.17487/RFC8986 <https://www.rfc-editor.org/info/rfc8986>

[BGP-LS-SR-Policy]

13.2. Informative References

, , , , and ,
,

, , 6 March 2025,
.

Previdi, S. Talaulikar, K., Ed. Dong, J. Gredler, H. J. Tantsura
"Advertisement of Segment Routing Policies using BGP Link-State" Work in
Progress Internet-Draft, draft-ietf-idr-bgp-ls-sr-policy-17 <https://
datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-sr-policy-17>

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 38

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8402
https://www.rfc-editor.org/info/rfc8754
https://www.rfc-editor.org/info/rfc8986
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-sr-policy-17
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-sr-policy-17

[BGP-SR-Policy]

[GKP94]

[RFC4786]

[RFC9252]

[RFC9259]

[RFC9350]

[RFC9352]

[RFC9513]

[RFC9514]

[RFC9602]

[RFC9603]

, , , , and ,
, ,

, 6 February 2025,
.

, , and ,
, , 1994.

 and , , , ,
, December 2006,

.

, , , , , and
, ,
, , July 2022,
.

, , , , and ,
,

, , June 2022,
.

, , , , and ,
, , , February 2023,

.

, , , , and ,
, ,

, February 2023, .

, , , and ,
, , , December 2023,

.

, , , , , and ,

, , , December 2023,
.

,
, , , October 2024,

.

, , , , and ,

, , , July 2024,
.

Previdi, S. Filsfils, C. Talaulikar, K., Ed. Mattes, P. D. Jain "Advertising
Segment Routing Policies in BGP" Work in Progress Internet-Draft, draft-ietf-
idr-sr-policy-safi-13 <https://datatracker.ietf.org/doc/html/
draft-ietf-idr-sr-policy-safi-13>

Graham, R. Knuth, D. O. Patashnik "Concrete Mathematics: A Foundation
for Computer Science" ISBN 9780201558029

Abley, J. K. Lindqvist "Operation of Anycast Services" BCP 126 RFC 4786
DOI 10.17487/RFC4786 <https://www.rfc-editor.org/info/
rfc4786>

Dawra, G., Ed. Talaulikar, K., Ed. Raszuk, R. Decraene, B. Zhuang, S. J.
Rabadan "BGP Overlay Services Based on Segment Routing over IPv6 (SRv6)"
RFC 9252 DOI 10.17487/RFC9252 <https://www.rfc-editor.org/info/
rfc9252>

Ali, Z. Filsfils, C. Matsushima, S. Voyer, D. M. Chen "Operations,
Administration, and Maintenance (OAM) in Segment Routing over IPv6 (SRv6)"
RFC 9259 DOI 10.17487/RFC9259 <https://www.rfc-editor.org/info/
rfc9259>

Psenak, P., Ed. Hegde, S. Filsfils, C. Talaulikar, K. A. Gulko "IGP Flexible
Algorithm" RFC 9350 DOI 10.17487/RFC9350 <https://www.rfc-
editor.org/info/rfc9350>

Psenak, P., Ed. Filsfils, C. Bashandy, A. Decraene, B. Z. Hu "IS-IS
Extensions to Support Segment Routing over the IPv6 Data Plane" RFC 9352 DOI
10.17487/RFC9352 <https://www.rfc-editor.org/info/rfc9352>

Li, Z. Hu, Z. Talaulikar, K., Ed. P. Psenak "OSPFv3 Extensions for Segment
Routing over IPv6 (SRv6)" RFC 9513 DOI 10.17487/RFC9513
<https://www.rfc-editor.org/info/rfc9513>

Dawra, G. Filsfils, C. Talaulikar, K., Ed. Chen, M. Bernier, D. B. Decraene
"Border Gateway Protocol - Link State (BGP-LS) Extensions for Segment Routing
over IPv6 (SRv6)" RFC 9514 DOI 10.17487/RFC9514 <https://
www.rfc-editor.org/info/rfc9514>

Krishnan, S. "Segment Routing over IPv6 (SRv6) Segment Identifiers in the IPv6
Addressing Architecture" RFC 9602 DOI 10.17487/RFC9602
<https://www.rfc-editor.org/info/rfc9602>

Li, C., Ed. Kaladharan, P. Sivabalan, S. Koldychev, M. Y. Zhu "Path
Computation Element Communication Protocol (PCEP) Extensions for IPv6
Segment Routing" RFC 9603 DOI 10.17487/RFC9603 <https://www.rfc-
editor.org/info/rfc9603>

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 39

https://datatracker.ietf.org/doc/html/draft-ietf-idr-sr-policy-safi-13
https://datatracker.ietf.org/doc/html/draft-ietf-idr-sr-policy-safi-13
https://www.rfc-editor.org/info/rfc4786
https://www.rfc-editor.org/info/rfc4786
https://www.rfc-editor.org/info/rfc9252
https://www.rfc-editor.org/info/rfc9252
https://www.rfc-editor.org/info/rfc9259
https://www.rfc-editor.org/info/rfc9259
https://www.rfc-editor.org/info/rfc9350
https://www.rfc-editor.org/info/rfc9350
https://www.rfc-editor.org/info/rfc9352
https://www.rfc-editor.org/info/rfc9513
https://www.rfc-editor.org/info/rfc9514
https://www.rfc-editor.org/info/rfc9514
https://www.rfc-editor.org/info/rfc9602
https://www.rfc-editor.org/info/rfc9603
https://www.rfc-editor.org/info/rfc9603

Appendix A. Complete Pseudocodes
The content of this section is purely informative rendering of the pseudocodes of with
the modifications in this document. This rendering may not be used as a reference.

[RFC8986]

A.1. End with NEXT-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End SID
with the NEXT-CSID flavor:

Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop
or Destination Options of a packet matching a FIB entry locally instantiated as an End SID with
the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 40

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.2. End.X with NEXT-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End.X SID
with the NEXT-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 41

Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop
or Destination Options of a packet matching a FIB entry locally instantiated as an End.X SID with
the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Submit the packet to the IPv6 module for transmission
 to the new destination via a member of J.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 42

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.X SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.
N09. }

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.3. End.T with NEXT-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End.T SID
with the NEXT-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 43

Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop
or Destination Options of a packet matching a FIB entry locally instantiated as an End.T SID with
the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Set the packet's associated FIB table to T.
N08.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15.1. Set the packet's associated FIB table to T.
S15.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 44

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.T SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Set the packet's associated FIB table to T.
N08.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
N09. }

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.4. End.B6.Encaps with NEXT-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an
End.B6.Encaps SID with the NEXT-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 45

Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop
or Destination Options of a packet matching a FIB entry locally instantiated as an End.B6.Encaps
SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push a new IPv6 header with its own SRH containing B.
N08.2. Set the outer IPv6 SA to A.
N08.3. Set the outer IPv6 DA to the first SID of B.
N08.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
N08.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Push a new IPv6 header with its own SRH containing B.
S16. Set the outer IPv6 SA to A.
S17. Set the outer IPv6 DA to the first SID of B.
S18. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
S19. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 46

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.B6.Encaps SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push a new IPv6 header with its own SRH containing B.
N08.2. Set the outer IPv6 SA to A.
N08.3. Set the outer IPv6 DA to the first SID of B.
N08.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
N08.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.5. End.BM with NEXT-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End.BM SID
with the NEXT-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 47

Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop
or Destination Options of a packet matching a FIB entry locally instantiated as an End.BM SID
with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push the MPLS label stack for B.
N08.2. Submit the packet to the MPLS engine for transmission.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Push the MPLS label stack for B.
S16. Submit the packet to the MPLS engine for transmission.

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 48

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.BM SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push the MPLS label stack for B.
N08.2. Submit the packet to the MPLS engine for transmission.
N09. }

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.6. End with REPLACE-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End SID
with the REPLACE-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 49

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
S16. }

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 50

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.7. End.X with REPLACE-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End.X SID
with the REPLACE-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 51

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.X SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10. Submit the packet to the IPv6 module for transmission to
 the new destination via a member of J.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.
S16. }

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 52

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.8. End.T with REPLACE-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End.T SID
with the REPLACE-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 53

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.T SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10.1. Set the packet's associated FIB table to T.
R10.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21.1. Set the packet's associated FIB table to T.
R21.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
S16. }

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 54

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.9. End.B6.Encaps with REPLACE-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an
End.B6.Encaps SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10.1. Push a new IPv6 header with its own SRH containing B.
R10.2. Set the outer IPv6 SA to A.
R10.3. Set the outer IPv6 DA to the first SID of B.
R10.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R10.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 55

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.B6.Encaps SID with the REPLACE-CSID flavor:

R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21.1. Push a new IPv6 header with its own SRH containing B.
R21.2. Set the outer IPv6 SA to A.
R21.3. Set the outer IPv6 DA to the first SID of B.
R21.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R21.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
S16. }

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

A.10. End.BM with REPLACE-CSID
When processing the SRH of a packet matching a FIB entry locally instantiated as an End.BM SID
with the REPLACE-CSID flavor:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 56

When processing the upper-layer header of a packet matching a FIB entry locally instantiated as
an End.BM SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10.1. Push the MPLS label stack for B.
R10.2. Submit the packet to the MPLS engine for transmission.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21.1. Push the MPLS label stack for B.
R21.2. Submit the packet to the MPLS engine for transmission.
S16. }

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 57

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

Acknowledgements
The authors would like to thank , , , , ,

, , and for their insightful feedback and suggestions.

The authors would also like to thank , , ,
, , and for their thorough review of this document.

Kamran Raza Xing Jiang YuanChao Su Han Li Yisong Liu
Martin Vigoureux Joel Halpern Tal Mizrahi

Andrew Alston Linda Dunbar Adrian Farrel Boris
Hassanov Alvaro Retana Gunter Van de Velde

Contributors
Liu Aihua
ZTE Corporation
China

liu.aihua@zte.com.cnEmail:

Dennis Cai
Alibaba
United States of America

d.cai@alibaba-inc.comEmail:

Darren Dukes
Cisco Systems, Inc.
Canada

ddukes@cisco.comEmail:

James N Guichard
Futurewei Technologies Ltd.
United States of America

james.n.guichard@futurewei.comEmail:

Cheng Li
Huawei Technologies
China

c.l@huawei.comEmail:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 58

mailto:liu.aihua@zte.com.cn
mailto:d.cai@alibaba-inc.com
mailto:ddukes@cisco.com
mailto:james.n.guichard@futurewei.com
mailto:c.l@huawei.com

Robert Raszuk
NTT Network Innovations
United States of America

robert@raszuk.netEmail:

Ketan Talaulikar
Cisco Systems, Inc.
India

ketant.ietf@gmail.comEmail:

Daniel Voyer
Bell Canada
Canada

daniel.voyer@bell.caEmail:

Shay Zadok
Broadcom
Israel

shay.zadok@broadcom.comEmail:

Authors' Addresses
Weiqiang Cheng ()editor
China Mobile
China

chengweiqiang@chinamobile.comEmail:

Clarence Filsfils
Cisco Systems, Inc.
Belgium

cf@cisco.comEmail:

Zhenbin Li
Huawei Technologies
China

lizhenbin@huawei.comEmail:

Bruno Decraene
Orange
France

bruno.decraene@orange.comEmail:

Francois Clad ()editor
Cisco Systems, Inc.
France

fclad.ietf@gmail.comEmail:

RFC 9800 Compressed SRv6 Segment List Encoding June 2025

Cheng, et al. Standards Track Page 59

mailto:robert@raszuk.net
mailto:ketant.ietf@gmail.com
mailto:daniel.voyer@bell.ca
mailto:shay.zadok@broadcom.com
mailto:chengweiqiang@chinamobile.com
mailto:cf@cisco.com
mailto:lizhenbin@huawei.com
mailto:bruno.decraene@orange.com
mailto:fclad.ietf@gmail.com

	RFC 9800
	Compressed SRv6 Segment List Encoding
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Requirements Language

	3. Basic Concepts
	4. SR Segment Endpoint Flavors
	4.1. NEXT-CSID Flavor
	4.1.1. End with NEXT-CSID
	4.1.2. End.X with NEXT-CSID
	4.1.3. End.T with NEXT-CSID
	4.1.4. End.B6.Encaps with NEXT-CSID
	4.1.5. End.B6.Encaps.Red with NEXT-CSID
	4.1.6. End.BM with NEXT-CSID
	4.1.7. Combination with PSP, USP, and USD Flavors

	4.2. REPLACE-CSID Flavor
	4.2.1. End with REPLACE-CSID
	4.2.2. End.X with REPLACE-CSID
	4.2.3. End.T with REPLACE-CSID
	4.2.4. End.B6.Encaps with REPLACE-CSID
	4.2.5. End.B6.Encaps.Red with REPLACE-CSID
	4.2.6. End.BM with REPLACE-CSID
	4.2.7. End.DX and End.DT with REPLACE-CSID
	4.2.8. Combination with PSP, USP, and USD Flavors

	5. CSID Allocation
	5.1. Global CSID
	5.2. Local CSID
	5.3. Recommended Installation of CSIDs in FIB

	6. SR Source Node
	6.1. SID Validation for Compression
	6.2. Segment List Compression
	6.3. Rules for Segment Lists Containing NEXT-CSID Flavor SIDs
	6.4. Rules for Segment Lists Containing REPLACE-CSID Flavor SIDs
	6.5. Upper-Layer Checksums

	7. Inter-Domain Compression
	7.1. End.LBS: Locator-Block Swap
	7.1.1. End.LBS with NEXT-CSID
	7.1.2. End.LBS with REPLACE-CSID

	7.2. End.XLBS: L3 Cross-Connect and Locator-Block Swap
	7.2.1. End.XLBS with NEXT-CSID
	7.2.2. End.XLBS with REPLACE-CSID

	8. Control Plane
	9. Operational Considerations
	9.1. Flavor, Block, and CSID Length
	9.2. GIB/LIB Usage
	9.3. Pinging a SID
	9.4. ICMP Error Processing

	10. Applicability to Other SRv6 Endpoint Behaviors
	11. Security Considerations
	12. IANA Considerations
	12.1. SRv6 Endpoint Behaviors

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Complete Pseudocodes
	A.1. End with NEXT-CSID
	A.2. End.X with NEXT-CSID
	A.3. End.T with NEXT-CSID
	A.4. End.B6.Encaps with NEXT-CSID
	A.5. End.BM with NEXT-CSID
	A.6. End with REPLACE-CSID
	A.7. End.X with REPLACE-CSID
	A.8. End.T with REPLACE-CSID
	A.9. End.B6.Encaps with REPLACE-CSID
	A.10. End.BM with REPLACE-CSID

	Acknowledgements
	Contributors
	Authors' Addresses

 Compressed SRv6 Segment List Encoding

 China Mobile

 China

 chengweiqiang@chinamobile.com

 Cisco Systems, Inc.

 Belgium

 cf@cisco.com

 Huawei Technologies

 China

 lizhenbin@huawei.com

 Orange

 France

 bruno.decraene@orange.com

 Cisco Systems, Inc.

 France

 fclad.ietf@gmail.com

 RTG
 spring
 Segment Routing
 IPv6 Segment Routing
 Compressed SID
 CSID
 NEXT-CSID
 REPLACE-SID
 SRH Compression

 Segment Routing over IPv6 (SRv6) is the instantiation of Segment Routing (SR) on the IPv6 data plane. This document specifies new flavors for the SRv6 endpoint behaviors defined in RFC 8986, which enable the compression of an SRv6 segment list. Such compression significantly reduces the size of the SRv6 encapsulation needed to steer packets over long segment lists.
 This document updates RFC 8754 by allowing a Segment List entry in the Segment Routing Header (SRH) to be either an IPv6 address, as specified in RFC 8754, or a REPLACE-CSID container in packed format, as specified in this document.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Requirements Language

 . Basic Concepts

 . SR Segment Endpoint Flavors

 . NEXT-CSID Flavor

 . End with NEXT-CSID

 . End.X with NEXT-CSID

 . End.T with NEXT-CSID

 . End.B6.Encaps with NEXT-CSID

 . End.B6.Encaps.Red with NEXT-CSID

 . End.BM with NEXT-CSID

 . Combination with PSP, USP, and USD Flavors

 . REPLACE-CSID Flavor

 . End with REPLACE-CSID

 . End.X with REPLACE-CSID

 . End.T with REPLACE-CSID

 . End.B6.Encaps with REPLACE-CSID

 . End.B6.Encaps.Red with REPLACE-CSID

 . End.BM with REPLACE-CSID

 . End.DX and End.DT with REPLACE-CSID

 . Combination with PSP, USP, and USD Flavors

 . CSID Allocation

 . Global CSID

 . Local CSID

 . Recommended Installation of CSIDs in FIB

 . SR Source Node

 . SID Validation for Compression

 . Segment List Compression

 . Rules for Segment Lists Containing NEXT-CSID Flavor SIDs

 . Rules for Segment Lists Containing REPLACE-CSID Flavor SIDs

 . Upper-Layer Checksums

 . Inter-Domain Compression

 . End.LBS: Locator-Block Swap

 . End.LBS with NEXT-CSID

 . End.LBS with REPLACE-CSID

 . End.XLBS: L3 Cross-Connect and Locator-Block Swap

 . End.XLBS with NEXT-CSID

 . End.XLBS with REPLACE-CSID

 . Control Plane

 . Operational Considerations

 . Flavor, Block, and CSID Length

 . GIB/LIB Usage

 . Pinging a SID

 . ICMP Error Processing

 . Applicability to Other SRv6 Endpoint Behaviors

 . Security Considerations

 . IANA Considerations

 . SRv6 Endpoint Behaviors

 . References

 . Normative References

 . Informative References

 . Complete Pseudocodes

 . End with NEXT-CSID

 . End.X with NEXT-CSID

 . End.T with NEXT-CSID

 . End.B6.Encaps with NEXT-CSID

 . End.BM with NEXT-CSID

 . End with REPLACE-CSID

 . End.X with REPLACE-CSID

 . End.T with REPLACE-CSID

 . End.B6.Encaps with REPLACE-CSID

 . End.BM with REPLACE-CSID

 Acknowledgements

 Contributors

 Authors' Addresses

 Introduction
 The Segment Routing (SR) architecture describes two data plane instantiations of SR: SR over MPLS (SR-MPLS) and SR over IPv6 (SRv6).
 SRv6 Network Programming builds upon the IPv6 Segment Routing Header (SRH) to define a framework for constructing a network program with topological and service segments.
 Some SRv6 applications, such as strict path traffic engineering, may require long segment lists. Compressing the encoding of these long segment lists in the packet header can significantly reduce the header size. This document specifies new flavors to the SRv6 endpoint behaviors defined in that enable a compressed encoding of the SRv6 segment list.
This document also specifies new SRv6 endpoint behaviors to preserve the compression efficiency in multi-domain environments.
 The SRv6 endpoint behaviors defined in this document leverage the SRv6 data plane defined in and ; the behaviors are compatible with the SRv6 control plane extensions for IS-IS , OSPF , and BGP .
 This document updates by allowing a Segment List entry in the SRH to be either an IPv6 address, as specified in , or a REPLACE-CSID container in packed format, as specified in .

 Terminology
 This document leverages the terms defined in , , and , in particular segment, segment list, Segment Identifier (SID), SID list, SR policy, prefix segment, adjacency segment, SRH, SR domain, SR source node, SR segment endpoint node, transit node, SRv6 endpoint behavior, flavor, SID block, locator, function, and argument. The reader is assumed to be familiar with this terminology.
 This document introduces the following new terms:

 Locator-Block:
 The most significant bits of a SID locator
 that represent the SRv6 SID block. The Locator-Block is referred to as
 "B" in .
 Locator-Node:
 The least significant bits of a SID locator
 that identify the SR segment endpoint node instantiating the SID. The
 Locator-Node is referred to as "N" in .
 Compressed-SID (CSID):
 A compressed encoding of a SID. The
 CSID includes the Locator-Node and Function bits of the SID being
 compressed. If either constituent of the SID is empty (zero length),
 then the same applies to its CSID encoding.
 CSID container:
 A 128-bit IPv6 address that functions as a
 container holding a list of one or more CSIDs and the Argument (if
 any) of the last CSID.
 CSID sequence:
 A group of one or more consecutive SID list
 entries encoding the common Locator-Block and at least one CSID
 container.
 Compressed SID list:
 A segment list encoding that reduces
 the packet header length thanks to one or more CSID sequences. A
 compressed SID list also contains zero, one, or more uncompressed
 SIDs.
 Global Identifiers Block (GIB):
 The pool of CSID values
 available for global allocation.
 Local Identifiers Block (LIB):
 The pool of CSID values
 available for local allocation.

 In this document, the length of each constituent part of a SID is referred to as follows:

 LBL is the Locator-Block length of the SID.

 LNL is the Locator-Node length of the SID.

 FL is the Function length of the SID.

 AL is the Argument length of the SID.

 In addition, the Locator-Node and Function length (LNFL) is the sum of the LNL and the FL of the SID. It is also referred to as the "CSID length".

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Basic Concepts
 In an SR domain, all SRv6 SIDs instantiated from the same Locator-Block share the same most significant bits. In addition, when the combined length of the SRv6 SID Locator, Function, and Argument is smaller than 128 bits, the least significant bits of the SID are padded with zeros.
The compressed segment list encoding seeks to decrease the packet header length by avoiding the repetition of the same Locator-Block and reducing the use of padding bits.
 Building upon, and fully compatible with the mechanisms specified in and , the compressed segment list encoding leverages a SID list compression logic at the SR source node (see) in combination with new flavors of the SRv6 endpoint behaviors that process the compressed SID list (see).
 An SR source node constructs and compresses the SID list depending on the SIDs instantiated on each SR segment endpoint node that the packet is intended to traverse, as well as its own compression capabilities. The resulting compressed SID list is a combination of CSID sequences, for the SIDs that the SR source node was able to compress, and uncompressed SIDs, which could not be compressed. In case the SR source node is able to compress all the SIDs in the SID list, the compressed SID list comprises only CSID sequences (one or more) and no uncompressed SIDs. Conversely, the compressed SID list comprises only uncompressed SIDs when the SR source is unable to compress any of the constituent SIDs.

 SR Segment Endpoint Flavors
 This section defines two SR segment endpoint flavors: NEXT-CSID and REPLACE-CSID, for the End, End.X, End.T, End.B6.Encaps, End.B6.Encaps.Red, and End.BM behaviors of .
 This section also defines a REPLACE-CSID flavor for the End.DX6, End.DX4, End.DT6, End.DT4, End.DT46, End.DX2, End.DX2V, End.DT2U, and End.DT2M behaviors of .
A counterpart NEXT-CSID flavor is not defined for these behaviors. Any SID can be the last element of a CSID sequence compressed using the NEXT-CSID flavor (see) and the aforementioned SRv6 endpoint behaviors are always in the last position in a SID list; thus, there is no need for any modification of the behaviors defined in .
 Future documents may extend the applicability of the NEXT-CSID and REPLACE-CSID flavors to other SRv6 endpoint behaviors (see).
 The use of these flavors, either individually or in combination, enables the compressed segment list encoding.
 The NEXT-CSID flavor and the REPLACE-CSID flavor both leverage the SID Argument to determine the next SID to be processed, but employ different SID list compression schemes.
With the NEXT-CSID flavor, each CSID container is a fully formed SRv6 SID with the common Locator-Block for all the CSIDs in the CSID container, a Locator-Node and Function that are those of the first CSID, and an Argument carrying the subsequent CSIDs.
With the REPLACE-CSID flavor, only the first element in a CSID sequence is a fully formed SRv6 SID. It has the common Locator-Block for all the CSIDs in the CSID sequence, and a Locator-Node and Function that are those of the first CSID. The remaining elements in the CSID sequence are CSID containers carrying the subsequent CSIDs without the Locator-Block.
 Regardless of which flavor is used, the IPv6 address carried in the Destination Address field of the IPv6 header is a valid SRv6 SID conforming to .
 In the remainder of this document, the term "a SID of this document" refers to any End, End.X, End.T, End.B6.Encaps, End.B6.Encaps.Red, or End.BM SID with the NEXT-CSID or the REPLACE-CSID flavor and with any combination of Penultimate Segment Pop (PSP), Ultimate Segment Pop (USP), and Ultimate Segment Decapsulation (USD) flavor, or any End.DX6, End.DX4, End.DT6, End.DT4, End.DT46, End.DX2, End.DX2V, End.DT2U, or End.DT2M with the REPLACE-CSID flavor. All the SRv6 endpoint behaviors introduced in this document are listed in .
 In the remainder of this document, the terms "NEXT-CSID flavor SID" and "REPLACE-CSID flavor SID" refer to any SID of this document with the NEXT-CSID flavor and with the REPLACE-CSID flavor, respectively.

 NEXT-CSID Flavor
 A CSID sequence compressed using the mechanism of the NEXT-CSID flavor comprises one or more CSID containers. Each CSID container is a fully formed 128-bit SID structured as shown in . It carries a Locator-Block followed by a series of CSIDs. The Locator-Node and Function of the CSID container are those of the first CSID, and its Argument is the contiguous series of subsequent CSIDs. The second CSID is encoded in the most significant bits of the CSID container Argument. The third CSID is encoded in the bits of the Argument that immediately follow the second CSID, and so on. When all CSIDs have the same length, a CSID container can carry up to K CSIDs, where K is computed as floor((128-LBL)/LNFL) (floor(x) is the greatest integer less than or equal to x). Each CSID container for NEXT-CSID is independent, such that contiguous CSID containers in a CSID sequence can be considered to be separate CSID sequences.
 When a CSID sequence compressed using the NEXT-CSID flavor comprises at least two CSIDs, the last CSID in the sequence is not required to have the NEXT-CSID flavor. It can be bound to any SRv6 endpoint behavior, including behaviors and REPLACE-CSID flavor, as long as the updated Destination Address resulting from the processing of the previous CSID in the sequence is a valid form for that last SID. Line S12 of the first pseudocode in provides sufficient conditions to ensure this property.

 Structure of a NEXT-CSID Flavor SID (Scaled for a 48-Bit Locator‑Block, 16-Bit Combined Locator-Node and Function, and 64-Bit Argument)

 Locator-Block
 Loc-Node
 Argument
 Function
 LBL
 LNFL
 AL

+--+
| Locator-Block |Loc-Node| Argument |
| |Function| |
+--+
 <----------------------> <------> <------------------------------>
 LBL LNFL AL

 illustrates a compressed SID list as could be produced by an SR source node steering a packet into an SR policy with a SID list of eight NEXT-CSID flavor SIDs. All SIDs in this example have a 48-bit Locator-Block, 16-bit combined Locator-Node and Function, and 64-bit Argument. The SR source node compresses the SR policy SID list as a compressed SID list of two CSID containers. The first CSID container carries a Locator-Block and the first five CSIDs. The second CSID container carries a Locator-Block and the sixth, seventh, and eighth CSIDs. Since the SR source node does not use the second CSID container at full capacity, it sets the 32 least significant bits to zero. The SR source node sets the IPv6 Destination Address (DA) with the value of the first CSID container and the first element of the SRH Segment List with the value of the second CSID container. Without reduced SRH (see), the SR source node also writes the first CSID container as the second element of the SRH Segment List.
 Note that the CSIDs within a given CSID container appear in forward order to leverage the longest-prefix match IP forwarding, while the entries in the SRH Segment List appear in reversed order of their processing, as specified in .

 Compressed SID List of Eight NEXT-CSID Flavor SIDs with a 48-Bit Locator‑Block, 16-Bit Combined Locator-Node and Function, and 64-Bit Argument

 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 Locator-Block
 1st
 CSID
 2nd
 CSID
 3rd
 CSID
 4th
 CSID
 5th
 CSID
 First
 CSID
 container
 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 Locator-Block
 6th
 CSID
 7th
 CSID
 8th
 CSID
 0
 Second
 CSID
 container

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
+ Locator-Block +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | 1st CSID |
+-+
| 2nd CSID | 3rd CSID |
+-+
| 4th CSID | 5th CSID |
+-+
 First CSID Container

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
+ Locator-Block +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | 6th CSID |
+-+
| 7th CSID | 8th CSID |
+-+
| 0 |
+-+
 Second CSID Container

 An implementation MUST support a 32-bit LBL and a 16-bit CSID length (LNFL) for NEXT-CSID flavor SIDs, and it MAY support any additional Locator-Block and CSID length.
 The AL for NEXT-CSID flavor SIDs is equal to 128-LBL-LNFL.
 When processing an IPv6 packet that matches a Forwarding Information Base (FIB) entry locally instantiated as a SID with the NEXT-CSID flavor, the SR segment endpoint node applies the procedure specified in the following subsection that corresponds to the SID behavior. If the SID also has the PSP, USP, or USD flavor, the procedure is modified as described in .
 An SR segment endpoint node instantiating a SID of this document with the NEXT-CSID flavor MUST accept any Argument value for that SID.
 At a high level, for any SID with the NEXT-CSID flavor, the SR segment endpoint node determines the next SID of the SID list as follows. If the Argument value of the active SID is non-zero, the SR segment endpoint node constructs the next SID from the active SID by copying the entire SID Argument value to the bits that immediately follow the Locator-Block, thus overwriting the active SID Locator-Node and Function with those of the next CSID, and filling the least significant LNFL bits of the Argument with zeros. Otherwise (if the Argument value is 0), the SR segment endpoint node copies the next 128-bit Segment List entry from the SRH to the Destination Address field of the IPv6 header.

 End with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End SID with the NEXT-CSID flavor, the procedure described in is executed with the following modifications.
 The below pseudocode is inserted between lines S01 and S02 of the SRH processing in . In addition, this pseudocode is executed before processing the first
header in the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the IPv6
extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }

 Notes:

 DA.Argument identifies the value contained in the bits [(LBL+LNFL)..127] in the Destination Address of the IPv6 header.

 The value in the Segments Left field of the SRH is not modified when DA.Argument in the received packet has a non-zero value.

 A rendering of the complete pseudocode is provided in .

 End.X with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.X SID with the NEXT-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing line N08 as shown below.

N08. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.

 Note: the variable J is defined in .

 The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in after applying the modification described in . In addition, this pseudocode is executed before processing the first
header in the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the IPv6
extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.
 A rendering of the complete pseudocode is provided in .

 End.T with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.T SID with the NEXT-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing line N08 as shown below.

N08.1. Set the packet's associated FIB table to T.
N08.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

 Note: the variable T is defined in .

 The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in after applying the modification described in . In addition, this pseudocode is executed before processing the first
header in the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the IPv6
extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.
 A rendering of the complete pseudocode is provided in .

 End.B6.Encaps with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.B6.Encaps SID with the NEXT-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing line N08 as shown below.

N08.1. Push a new IPv6 header with its own SRH containing B.
N08.2. Set the outer IPv6 SA to A.
N08.3. Set the outer IPv6 DA to the first SID of B.
N08.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
N08.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.

 Note: the variables A and B, as well as the values of the Payload Length, Traffic Class, Flow Label, Hop Limit, and Next Header are defined in .

 The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in . In addition, this pseudocode is executed before processing the first
header in the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the IPv6
extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.
 A rendering of the complete pseudocode is provided in .
 Similar to the base End.B6.Encaps SID defined in , the NEXT-CSID flavor variant updates the Destination Address field of the inner IPv6 header to the next SID in the original segment list before encapsulating the packet with the segment list of SR Policy B. At the endpoint of SR Policy B, the encapsulation is removed and the inner packet is forwarded towards the exposed Destination Address, which already contains the next SID in the original segment list.

 End.B6.Encaps.Red with NEXT-CSID
 This is an optimization of the End.B6.Encaps with NEXT-CSID behavior.
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.B6.Encaps.Red SID with the NEXT-CSID flavor, the procedure described in of this document is executed with the modifications in .

 End.BM with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.BM SID with the NEXT-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing line N08 as shown below.

N08.1. Push the MPLS label stack for B.
N08.2. Submit the packet to the MPLS engine for transmission.

 Note: the variable B is defined in .

 The resulting pseudocode is inserted between lines S01 and S02 of the SRH processing in . In addition, this pseudocode is executed before processing the first
header in the IPv6 extension header chain that is not an SRH, a Hop-by-Hop header, or a Destination Options header. If the IPv6
extension header chain does not include any header matching this
criterion, this pseudocode is executed before processing the upper-layer header.
 A rendering of the complete pseudocode is provided in .

 Combination with PSP, USP, and USD Flavors

 PSP:
 The PSP flavor defined in is unchanged when combined
 with the NEXT-CSID flavor.
 USP:
 The USP flavor defined in is unchanged when combined
 with the NEXT-CSID flavor.
 USD:
 The USD flavor defined in is unchanged when combined
 with the NEXT-CSID flavor.

 REPLACE-CSID Flavor
 A CSID sequence compressed using the mechanism of the REPLACE-CSID flavor starts with a CSID container in fully formed 128-bit SID format. The Locator-Block of this SID is the common Locator-Block for all the CSIDs in the CSID sequence, its Locator-Node and Function are those of the first CSID, and its Argument carries the index of the current CSID in the current CSID container. The Argument value is initially 0. When more segments are present in the segment list, the CSID sequence continues with one or more CSID containers in packed format carrying the series of subsequent CSIDs. Each container in packed format is a 128-bit Segment List entry split into K "positions" of LNFL bits, where K is computed as floor(128/LNFL). If LNFL does not divide into 128 perfectly, a zero pad is added in the least significant bits of the CSID container to fill the bits left over. The second CSID in the CSID sequence is encoded in the least significant bit position of the first CSID container in packed format (position K-1), the third CSID is encoded in position K-2, and so on.
 The last CSID in the CSID sequence is not required to have the REPLACE-CSID flavor. It can be bound to any SRv6 endpoint behavior, including the behaviors described in and NEXT-CSID flavor, as long as it meets the conditions defined in .
 The structure of a SID with the REPLACE-CSID flavor is shown in . The same structure is also that of the CSID container for REPLACE-CSID in fully formed 128-bit SID format.

 Structure of a REPLACE-CSID Flavor SID (Scaled for a 48-Bit Locator‑Block, 32-Bit Combined Locator-Node and Function, and 48-Bit Argument)

 Locator-Block
 Locator-Node
 Argument
 +
 Function
 LBL
 LNFL
 AL

+---+
| Locator-Block | Locator-Node | Argument |
| | + Function | |
+---+
 <----------------------> <--------------> <----------------------->
 LBL LNFL AL

 The structure of a CSID container for REPLACE-CSID in packed format is shown in .

 Structure of a CSID Container for REPLACE-CSID Using a 32-Bit CSID Length (K = 4)

 Fourth
 CSID
 Third
 CSID
 Second
 CSID
 First
 CSID
 (position
 0)
 (position
 1)
 (position
 2)
 (position
 3)
 LNFL
 LNFL
 LNFL
 LNFL

+---+
| Fourth CSID | Third CSID | Second CSID | First CSID |
| (position 0) | (position 1) | (position 2) | (position 3) |
+---+
 <--------------> <--------------> <--------------> <-------------->
 LNFL LNFL LNFL LNFL

 illustrates a compressed SID list as could be produced by an SR source node steering a packet into an SR policy SID list of seven REPLACE-CSID flavor SIDs. All SIDs in this example have a 48-bit Locator-Block, 32-bit combined Locator-Node and Function, and 48-bit Argument. The SR source node compresses the SR policy SID list as a compressed SID list of three CSID containers. The first CSID container is in fully formed 128-bit SID format. It carries a Locator-Block, the first CSID, and the argument value zero. The second and third CSID containers are in packed format. The second CSID container carries the second, third, fourth, and fifth CSIDs. The third CSID container carries the sixth and seventh CSIDs. Since the SR source node does not use the third CSID container at full capacity, it sets the 64 least significant bits to zero. The SR source node sets the IPv6 DA with the value of the first CSID container, sets the first element in the SRH Segment List with the value of the third CSID container, and sets the second element of the SRH Segment List with the value of the second CSID container (the elements in the SRH Segment List appear in reversed order of their processing, as specified in). Without reduced SRH, the SR source node also writes the first CSID container as the third element of the SRH Segment List.

 Compressed SID List of Seven REPLACE-CSID Flavor SIDs with a 48-Bit Locator‑Block, 32-Bit Combined Locator-Node and Function, and 48-Bit Argument

 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 Locator-Block
 1st
 CSID
 1st
 CSID
 continued
 0
 First
 CSID
 container
 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 5th
 CSID
 4th
 CSID
 3rd
 CSID
 2nd
 CSID
 Second
 CSID
 container
 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 0
 7th
 CSID
 6th
 CSID
 Third
 CSID
 container

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
+ Locator-Block +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | 1st CSID |
+-+
| 1st CSID continued | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 0 +
| |
+-+
 First CSID Container

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 5th CSID |
+-+
| 4th CSID |
+-+
| 3rd CSID |
+-+
| 2nd CSID |
+-+
 Second CSID Container

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
+ 0 +
| |
+-+
| 7th CSID |
+-+
| 6th CSID |
+-+
 Third CSID Container

 This document updates by allowing each entry in the SRH Segment List to be either an IPv6 address or a REPLACE-CSID container in packed format. The SRv6 endpoint behaviors specified herein ensure that this entry is never copied as is to the IPv6 header and that the Destination Address field of the IPv6 header is always a valid SRv6 SID conforming to .
 The REPLACE-CSID flavor SIDs support any LBL, depending on the needs of the operator, as long as it does not exceed 128-LNFL-ceiling(log_2(128/LNFL)) (ceiling(x) is the least integer greater than or equal to x), so that enough bits remain available for the CSID and Argument. An LBL of 48, 56, 64, 72, or 80 bits is recommended for easier reading in operation.
 This document defines the REPLACE-CSID flavor for 16-bit and 32-bit CSID lengths (LNFL). An implementation MUST support a 32-bit CSID length for REPLACE-CSID flavor SIDs.
 The AL for REPLACE-CSID flavor SIDs is equal to 128-LBL-LNFL. The index value is encoded in the least significant X bits of the Argument, where X is computed as ceiling(log_2(128/LNFL)).
 When processing an IPv6 packet that matches a FIB entry locally instantiated as a SID with the REPLACE-CSID flavor, the SR segment endpoint node applies the procedure specified in the following subsection that corresponds to the SID behavior. If the SID also has the PSP, USP, or USD flavor, the procedure is modified as described in .
 At a high level, at the start of a CSID sequence using the REPLACE-CSID flavor, the first CSID container in fully formed 128-bit SID format is copied to the Destination Address of the IPv6 header. Then, for any SID with the REPLACE-CSID flavor, the SR segment endpoint node determines the next SID of the SID list as follows. When an SRH is present, the SR segment endpoint node decrements the index value in the Argument of the active SID if the index value is not 0 or, if it is 0, decrements the Segments Left value in the SRH and sets the index value in the Argument of the active SID to K-1. The updated index value indicates the position of the next CSID within the CSID container in packed format at the "Segment List" index "Segments Left" in the SRH. The SR segment endpoint node then constructs the next SID by copying this next CSID to the bits that immediately follow the Locator-Block in the Destination Address field of the IPv6 header, thus overwriting the active SID Locator-Node and Function with those of the next CSID. If no SRH is present, the SR segment endpoint node ignores the index value in the SID Argument (except End.DT2M, see) and processes the upper-layer header as per . The CSID sequence ends with a last CSID in the last CSID container that does not have the REPLACE-CSID flavor, or with the special CSID value 0, or when reaching the end of the segment list, whichever comes first.

 End with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End SID with the REPLACE-CSID flavor, the SRH processing described in is executed with the following modifications.
 Line S02 of SRH processing in is replaced as follows.

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {

 Lines S09 to S15 are replaced by the following pseudocode.

R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (floor(128/LNFL) - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

 Notes:

 DA.Arg.Index identifies the value contained in the bits [(128-ceiling(log_2(128/LNFL)))..127] in the Destination Address of the IPv6 header.

 Segment List[Segments Left][DA.Arg.Index] identifies the value contained in the bits [DA.Arg.Index*LNFL..(DA.Arg.Index+1)*LNFL-1] in the SRH Segment List entry at index Segments Left.

 The upper-layer header processing described in is unchanged.
 A rendering of the complete pseudocode is provided in .

 End.X with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.X SID with the REPLACE-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing lines R10 and R21 as shown below.

R10. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.

R21. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.

 Note: the variable J is defined in .

 The SRH processing in is replaced with the resulting pseudocode. The upper-layer header processing is unchanged.
 A rendering of the complete pseudocode is provided in .

 End.T with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.T SID with the REPLACE-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing lines R10 and R21 as shown below.

R10.1. Set the packet's associated FIB table to T.
R10.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

R21.1. Set the packet's associated FIB table to T.
R21.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

 Note: the variable T is defined in .

 The SRH processing in is replaced with the resulting pseudocode. The upper-layer header processing is unchanged.
 A rendering of the complete pseudocode is provided in .

 End.B6.Encaps with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.B6.Encaps SID with the REPLACE-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing lines R10 and R21 as shown below.

R10.1. Push a new IPv6 header with its own SRH containing B.
R10.2. Set the outer IPv6 SA to A.
R10.3. Set the outer IPv6 DA to the first SID of B.
R10.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R10.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.

R21.1. Push a new IPv6 header with its own SRH containing B.
R21.2. Set the outer IPv6 SA to A.
R21.3. Set the outer IPv6 DA to the first SID of B.
R21.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R21.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.

 Note: the variables A and B, as well as the values of the Payload Length, Traffic Class, Flow Label, Hop Limit, and Next Header are defined in .

 The SRH processing in is replaced with the resulting pseudocode. The upper-layer header processing is unchanged.
 A rendering of the complete pseudocode is provided in .

 End.B6.Encaps.Red with REPLACE-CSID
 This is an optimization of the End.B6.Encaps with REPLACE-CSID behavior.
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.B6.Encaps.Red SID with the REPLACE-CSID flavor, the procedure described in of this document is executed with the modifications in .

 End.BM with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.BM SID with the REPLACE-CSID flavor, the procedure described in is executed with the following modifications.
 The pseudocode in of this document is modified by replacing lines R10 and R21 as shown below.

R10.1. Push the MPLS label stack for B.
R10.2. Submit the packet to the MPLS engine for transmission.

R21.1. Push the MPLS label stack for B.
R21.2. Submit the packet to the MPLS engine for transmission.

 Note: the variable B is defined in .

 The SRH processing in is replaced with the resulting pseudocode. The upper-layer header processing is unchanged.
 A rendering of the complete pseudocode is provided in .

 End.DX and End.DT with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.DX6, End.DX4, End.DT6, End.DT4, End.DT46, End.DX2, End.DX2V, or End.DT2U SID with the REPLACE-CSID flavor, the corresponding procedure described in Sections through of is executed.
 These SIDs differ from those defined in by the presence of an Argument as part of the SID structure. The Argument value is ignored by the SR segment endpoint node.
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.DT2M SID with the REPLACE-CSID flavor, the procedure described in is executed with the following modification.
 For any End.DT2M SID with the REPLACE-CSID flavor, the value of Arg.FE2 is 16 bits long. The SR segment endpoint node obtains the value Arg.FE2 from the 16 most significant bits of DA.Argument if DA.Arg.Index is zero or from the 16 least significant bits of the next position in the current CSID container (Segment List[Segments Left][DA.Arg.Index-1]) otherwise (DA.Arg.Index is non-zero).

 Combination with PSP, USP, and USD Flavors
 PSP:
When combined with the REPLACE-CSID flavor, the additional PSP flavor instructions defined in are inserted after lines R09 and R20 of the pseudocode in , and the first line of the inserted instructions after R20 is modified as follows.

R20.1. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {

 Note: Segment List[Segments Left][DA.Arg.Index-1] identifies the value contained in the bits [(DA.Arg.Index-1)*LNFL..DA.Arg.Index*LNFL-1] in the SRH Segment List entry at index Segments Left.

 USP:
 When combined with the REPLACE-CSID flavor, the
 line S03 of the pseudocode in are
 substituted by the USP flavor instructions S03.1 to S03.4 defined
 in . Note that S03 is shown in the complete
 pseudocode in .
 USD:
 The USD flavor defined in is unchanged when combined
 with the REPLACE-CSID flavor.

 CSID Allocation
 The CSID value of 0 is reserved. It is used to indicate the end of a CSID container.
 In order to efficiently manage the CSID numbering space, a deployment may divide it into two non-overlapping sub-spaces: a GIB and a LIB.
 The CSID values that are allocated from the GIB have a global semantic within the Locator-Block, while those that are allocated from the LIB have a local semantic on an SR segment endpoint node and within the scope of the Locator-Block.
 The concept of LIB is applicable to SRv6 and specifically to its NEXT-CSID and REPLACE-CSID flavors. The shorter the CSID, the more benefit the LIB brings.
 The opportunity to use these sub-spaces, their size, and their CSID allocation policy depends on the CSID length relative to the size of the network (e.g., number of nodes, links, service routes). Some guidelines for a typical deployment scenario are provided in the below subsections.

 Global CSID
 A global CSID is a CSID allocated from the GIB.
 A global CSID identifies a segment defined at the Locator-Block level. The tuple (Locator-Block, CSID) identifies the same segment across all nodes of the SR domain. A typical example is a prefix segment bound to the End behavior.
 A node can have multiple global CSIDs under the same Locator-Block (e.g., one per IGP flexible algorithm ()). Multiple nodes may share the same global CSID (e.g., anycast).

 Local CSID
 A local CSID is a CSID allocated from the LIB.
 A local CSID identifies a segment defined at the node level and within the scope of a particular Locator-Block. The tuple (Locator-Block, CSID) identifies a different segment on each node of the SR domain. A typical example is a non-routed Adjacency segment bound to the End.X behavior.
 Let N1 and N2 be two different physical nodes of the SR domain and I a local CSID value: N1 may allocate value I to SID S1 and N2 may allocate the same value I to SID S2.

 Recommended Installation of CSIDs in FIB
 defines how an SR segment endpoint node identifies a locally instantiated SRv6 SID. To ensure that any valid argument value is accepted, an SR segment endpoint node instantiating a NEXT-CSID or REPLACE-CSID flavor SID should install a corresponding FIB entry that matches only the Locator and Function parts of the SID (i.e., with a prefix length of LBL + LNL + FL).
 In addition, an SR segment endpoint node instantiating NEXT-CSID flavor SIDs from both the GIB and LIB may install combined "Global + Local" FIB entries to match a sequence of global and local CSIDs in a single longest-prefix match (LPM) lookup.
 For example, let us consider an SR segment endpoint node 10 instantiating the following two NEXT-CSID flavor SIDs according to the CSID length, LBL, and GIB/LIB recommendations in this section.

 The SID 2001:db8:b1:10:: bound to the End behavior with the NEXT-CSID flavor is instantiated from a GIB with:

 LBL = 48 (Locator-Block value 0x20010db800b1),

 LNL = 16 (Locator-Node value 0x0010),

 FL = 0, and

 AL = 64.

 The SID 2001:db8:b1:f123:: bound to the End.X behavior for its local IGP adjacency 123 with the NEXT-CSID flavor is instantiated from a LIB with:

 LBL = 48 (Locator-Block value 0x20010db800b1),

 LNL = 0,

 FL = 16 (Function value 0xf123), and

 AL = 64.

 For SID 2001:db8:b1:10::, Node 10 would install the FIB entry 2001:db8:b1:10::/64 bound to the End SID with the NEXT-CSID flavor.
 For SID 2001:db8:b1:f123::, Node 10 would install the FIB entry 2001:db8:b1:f123::/64 bound to the End.X SID for adjacency 123 with the NEXT-CSID flavor.
 In addition, Node 10 may also install the combined FIB entry 2001:db8:b1:10:f123::/80 bound to the End.X SID for adjacency 123 with the NEXT-CSID flavor.
 As another example, let us consider an SR segment endpoint node 20 instantiating the following two REPLACE-CSID flavor SIDs according to the CSID length, LBL, and GIB/LIB recommendations in this section.

 2001:db8:b2:20:1:: from a GIB with LBL = 48, LNL = 16, FL = 16, AL = 48, and bound to the End behavior with the REPLACE-CSID flavor.

 2001:db8:b2:20:123:: from a GIB with LBL = 48, LNL = 16, FL = 16, AL = 48, and bound to the End.X behavior for its local IGP adjacency 123 with the REPLACE-CSID flavor.

 For SID 2001:db8:b2:20:1::, Node 20 would install the FIB entry 2001:db8:b2:20:1::/80 bound to the End SID with the REPLACE-CSID flavor.
 For SID 2001:db8:b2:20:123::, Node 20 would install the FIB entry 2001:db8:b2:20:123::/80 bound to the End.X SID for adjacency 123 with the REPLACE-CSID flavor.

 SR Source Node
 An SR source node may learn from a control plane protocol (see) or local configuration the SIDs that it can use in a segment list, along with their respective SRv6 endpoint behavior, structure, and any other relevant attribute (e.g., the set of L3 adjacencies associated with an End.X SID).

 SID Validation for Compression
 As part of the compression process or as a preliminary step, the SR source node MUST validate the SID structure of each SID of this document in the segment list. The SR source node does so regardless of whether the segment list is explicitly configured, locally computed, or advertised by a controller (e.g., via BGP or PCEP).
 A SID structure is valid for compression if it meets all the following conditions:

 The LBL is not 0.

 The LNFL is not 0.

 The AL is equal to 128-LBL-LNL-FL.

 When compressing a SID list, the SR source node MUST treat an invalid SID structure as unknown. A SID with an unknown SID structure is not compressible.
 discusses how the SIDs of this document and their structure can be advertised to the SR source node through various control plane protocols. The SID structure may also be learned through configuration or
other management protocols. The details of such mechanisms are outside the scope of this document.

 Segment List Compression
 An SR source node MAY compress a SID list when it includes NEXT-CSID and/or REPLACE-CSID flavor SIDs to reduce the packet header length.
 It is out of the scope of this document to describe the mechanism through which an uncompressed SID list is derived, since such a mechanism may include a wide range of considerations independent of compression (e.g., minimizing a specific metric, excluding certain links, or providing a loop-free fast-reroute path). As general guidance for implementation or future specification, such a mechanism should aim to select the combination of SIDs that would result in the shortest compressed SID list. For example, by selecting a CSID flavor SID over an equivalent non-CSID flavor SID or by consistently selecting SIDs of the same CSID flavor within each routing domain.
 The SID list that the SR source node pushes onto the packet MUST comply with the rules in Sections and and express the same list of segments as the original SID list. If these rules are not followed, the packet may get dropped or misrouted.
 If an SR source node chooses to compress the SID list, one method is described below for illustrative purposes. Any other method producing a compressed SID list of equal or shorter length than the uncompressed SID list MAY be used.
 This method walks the uncompressed SID list and compresses each series of consecutive NEXT-CSID flavor SIDs and each series of consecutive REPLACE-CSID flavor SIDs.

 When the compression method encounters a series of one or
 more consecutive compressible NEXT-CSID flavor SIDs, it compresses
 the series as follows. A SID with the NEXT-CSID flavor is
 compressible if its structure is known to the SR source node and its
 Argument value is 0.

S01. Initialize a NEXT-CSID container equal to the first SID in
 the series and initialize the remaining capacity of the
 CSID container to the AL of that SID
S02. For each subsequent SID in the series {
S03. If the current SID Locator-Block matches that of the CSID
 container and the current SID LNFL is lower than or equal
 to the remaining capacity of the NEXT-CSID container {
S04. Copy the current SID Locator-Node and Function to the
 most significant remaining Argument bits of the
 NEXT-CSID container and decrement the remaining
 capacity by LNFL
S05. } Else {
S06. Push the NEXT-CSID container onto the compressed SID list
S07. Initialize a new NEXT-CSID container equal to the current
 SID in the series and initialize the remaining capacity
 of the NEXT-CSID container to the AL of that SID
S08. } // End If
S09. } // End For
S10. If at least one SID remains in the uncompressed SID list
 (following the series of compressible NEXT-CSID flavor
 SIDs) {
S11. Set S to the next SID in the uncompressed SID list
S12. If S is advertised with a SID structure, and the
 Locator-Block of S matches that of the NEXT-CSID
 container, and the sum of the Locator-Node, Function, and
 Argument length of S is lower than or equal to the
 remaining capacity of the CSID container {
S13. Copy the Locator-Node, Function, and Argument of S to the
 most significant remaining Argument bits of the CSID
 container
S14. } // End If
S15. } // End If
S16. Push the NEXT-CSID container onto the compressed SID list

 When the compression method encounters a series of
 REPLACE-CSID flavor SIDs of the same CSID length in the uncompressed
 SID list, it compresses the series as per the following high-level
 pseudocode. A compression checking function ComCheck(F, S) is
 defined to check if two SIDs F and S share the same SID structure
 and Locator-Block value, and if S has either no Argument or an
 Argument with value 0. If the check passes, then ComCheck(F,S)
 returns true.

S01. Initialize a REPLACE-CSID container in full SID format equal
 to the first SID in the series
S02. Push the REPLACE-CSID container onto the compressed SID list
S03. Initialize a new REPLACE-CSID container in packed format if
 there are more than one SIDs and initialize the remaining
 capacity of the REPLACE-CSID container to 128 bits
S04. For each subsequent SID in the uncompressed SID list {
S05. Set S to the current SID in the uncompressed SID list
S06. If ComCheck(First SID, S) {
S07. If the LNFL of S is lower than or equal to
 the remaining capacity of the REPLACE-CSID container {
S08. Copy the Locator-Node and Function of S to the least
 significant remaining bits of the REPLACE-CSID
 container and decrement the remaining capacity by
 LNFL // Note
S09. } Else {
S10. Push the REPLACE-CSID container onto the compressed SID
 list
S11. Initialize a new REPLACE-CSID container in packed
 format with all bits set to 0
S12. Copy the Locator-Node and Function of S to the least
 significant remaining bits of the REPLACE-CSID
 container and decrement the remaining capacity by
 LNFL // Note
S13. }
S14. If S is not a REPLACE-CSID flavor SID, then break
S15. } Else {
S16. Break
S17. } // End If
S18. } // End For
S19. Push the REPLACE-CSID container (if it is not empty) onto the
 compressed SID list

 Note: When the last CSID is an End.DT2M SID with the REPLACE-CSID flavor, if there are 0 or at least two CSID positions left in the current REPLACE-CSID container, the CSID is encoded as described above and the value of the Arg.FE2 argument is placed in the 16 least significant bits of the next CSID position. Otherwise (if there is only one CSID position left in the current REPLACE-CSID container), the current REPLACE-CSID container is pushed onto the SID list (the value of the CSID position 0 remains zero) and the End.DT2M SID with the REPLACE-CSID flavor is encoded in full SID format with the value of the Arg.FE2 argument in the 16 most significant bits of the SID Argument.

 In all remaining cases (i.e., when the compression method encounters a SID in the uncompressed SID list that is not handled by any of the previous subroutines), it pushes this SID as is onto the compressed SID list.
 Regardless of how a compressed SID list is produced, the SR source node writes it in the IPv6 packet as described in Sections and of . The text is reproduced below for reference.

 A source node steers a packet into an SR Policy. If the SR Policy
results in a Segment List containing a single segment, and there is
no need to add information to the SRH flag or add TLV; the DA is set
to the single Segment List entry, and the SRH MAY be omitted.
 When needed, the SRH is created as follows:
 The Next Header and Hdr Ext Len fields are set as specified in
 .
 The Routing Type field is set to 4.
 The DA of the packet is set with the value of the first segment.
 The first element of the SRH Segment List is the ultimate segment.
 The second element is the penultimate segment, and so on.
 The Segments Left field is set to n-1, where n is the number of
 elements in the SR Policy.
 The Last Entry field is set to n-1, where n is the number of
 elements in the SR Policy.
 TLVs (including HMAC) may be set according to their specification.
 The packet is forwarded toward the packet's Destination Address
 (the first segment).
 When a source does not require the entire SID list to be preserved
in the SRH, a reduced SRH may be used.
 A reduced SRH does not contain the first segment of the related SR
Policy (the first segment is the one already in the DA of the IPv6
header), and the Last Entry field is set to n-2, where n is the
number of elements in the SR Policy.

 Rules for Segment Lists Containing NEXT-CSID Flavor SIDs

 If a Destination Options header would follow an SRH with a segment list of more than one segment compressed as a single NEXT-CSID container, the SR source node MUST NOT omit the SRH.

 When the last Segment List entry (index 0) in the SRH is a NEXT-CSID container representing more than one segment and the segment S preceding the first segment of this NEXT-CSID container in the segment list has the PSP flavor, then the PSP operation is performed at the SR segment endpoint node of S. If the PSP behavior should instead be performed at the penultimate segment along the path, then the SR source node MUST NOT compress the ultimate SID of the SID list into a NEXT-CSID container.

 If a Destination Options header would follow an SRH with a last Segment List entry being a NEXT-CSID container representing more than one segment, the SR source node MUST ensure that the PSP operation is not performed before the penultimate SR segment endpoint node along the path.

 When the Argument of a NEXT-CSID container is not used to full capacity, the remaining least significant bits of that Argument MUST be set to 0.

 Rules for Segment Lists Containing REPLACE-CSID Flavor SIDs

 All SIDs compressed in a REPLACE-CSID sequence MUST share the same Locator-Block and the same compression scheme.

 All SIDs except the last one in a CSID sequence for REPLACE-CSID MUST have the REPLACE-CSID flavor. If the last REPLACE-CSID container is fully filled (i.e., the last CSID is at position 0 in the REPLACE-CSID container) and the last SID in the CSID sequence is not the last segment in the segment list, the last SID in the CSID sequence MUST NOT have the REPLACE-CSID flavor.

 When a REPLACE-CSID flavor CSID is present as the last SID in a container that is not the last Segment List entry (index 0) in the SRH, the next element in the SID list MUST be a REPLACE-CSID container in packed format carrying at least one CSID.

 The SR source node determines the compression scheme of REPLACE-CSID flavor SIDs as follows.
 When receiving a SID advertisement for a REPLACE-CSID flavor SID with LNL = 16, FL = 0, AL = 128-LBL-LNFL, and all zeros as the value of the Argument, the SR source node marks both the SID and its locator as using 16-bit compression. All other SIDs allocated from this locator with LNL = 16, FL = 16, AL = 128-LBL-LNFL, and all zeros as the value of the Argument are also marked as using 16-bit compression. When receiving a SID advertisement for a REPLACE-CSID flavor SID with LNFL = 32, AL = 128-LBL-LNFL, and all zeros as the value of the Argument, the SR source node marks both the SID and its locator as using 32-bit compression.

 Upper-Layer Checksums
 The Destination Address used in the IPv6 pseudo-header () is that of the ultimate destination.
 At the SR source node, that address will be the Destination Address as it is expected to be received by the ultimate destination. When the last element in the compressed SID list is a CSID container, this address can be obtained from the last element in the uncompressed SID list or by repeatedly applying the segment behavior as described in . This applies regardless of whether an SRH is present in the IPv6 packet or is omitted.
 At the ultimate destination(s), that address will be in the Destination Address field of the IPv6 header.

 Inter-Domain Compression
 Some SRv6 traffic may need to cross multiple routing domains, such as different Autonomous Systems (ASes) or different routing areas within an SR domain. Different routing domains may use different addressing schema and Locator-Blocks.
 A property of a CSID sequence is that all CSIDs in the sequence share the same Locator-Block. Therefore, a segment list that spans multiple routing domains using different Locator-Blocks may need a separate CSID sequence for each domain.
 This section defines a solution to improve the efficiency of CSID compression in multi-domain environments by enabling a CSID sequence to combine CSIDs having different Locator-Blocks.
 The solution leverages two new SRv6 endpoint behaviors, "Endpoint with SRv6 Locator-Block Swap" ("End.LBS" for short) and "Endpoint with L3 cross-connect and SRv6 Locator-Block Swap" ("End.XLBS" for short), that enable modifying the Locator-Block for the next CSID in the CSID sequence at the routing domain boundary.

 End.LBS: Locator-Block Swap
 The End.LBS behavior is a variant of the End behavior that modifies the Locator-Block of the active CSID sequence. This document defines the End.LBS behavior with the NEXT-CSID flavor and the End.LBS behavior with the REPLACE-CSID flavor.
 An End.LBS SID is used to transition to a new Locator-Block when the routing domain boundary is on the SR segment endpoint node.
 Each instance of an End.LBS SID is associated with a target Locator-Block B2/m, where B2 is an IPv6 address prefix and m is the associated prefix length.
The original and target Locator-Blocks can have different prefix lengths as long as the new Destination Address formed by combining the target Locator-Block with the Locator-Node, Function, and Argument as described in the pseudocode of Sections and is a valid IPv6 address.
The target Locator-Block is a local property of the End.LBS SID on the SR segment endpoint node.

 Note: a local SID property is an attribute associated with the SID when it is instantiated on the SR segment endpoint node. When the SR segment endpoint node identifies the Destination Address of a received packet as a locally instantiated SID, it also retrieves any local property associated with this SID. Other examples of local SID properties include the set of L3 adjacencies of an End.X SID () and the lookup table of an End.DT6 SID ().

 The means by which an SR source node learns the target Locator-Block associated with an End.LBS SID are outside the scope of this document. As examples, it could be learned via configuration or signaled by a controller.

 End.LBS with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.LBS SID with the NEXT-CSID flavor and associated with the target Locator-Block B2/m, the SR segment endpoint node applies the procedure specified in with the lines N05 to N06 replaced as follows.

N05.1. Initialize an IPv6 address A equal to B2.
N05.2. Copy DA.Argument into the bits [m..(m+AL-1)] of A.
N06. Copy A to the Destination Address of the IPv6 header.

 End.LBS with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.LBS SID with the REPLACE-CSID flavor and associated with the target Locator-Block B2/m, the SR segment endpoint node applies the procedure specified in with the line R20 replaced as follows.

R20.1. Initialize an IPv6 address A equal to B2.
R20.2. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [m..m+LNFL-1] of A.
R20.3. Write DA.Arg.Index into the bits
 [(128-ceiling(log_2(128/LNFL)))..127] of A.
R20.4. Copy A to the Destination Address of the IPv6 header.

 End.XLBS: L3 Cross-Connect and Locator-Block Swap
 The End.XLBS behavior is a variant of the End.X behavior that modifies the Locator-Block of the active CSID sequence. This document defines the End.XLBS behavior with the NEXT-CSID flavor and the End.XLBS behavior with the REPLACE-CSID flavor.
 An End.XLBS SID is used to transition to a new Locator-Block when the routing domain boundary is on a link adjacent to the SR segment endpoint node.
 Each instance of an End.XLBS SID is associated with a target Locator-Block B2/m and a set, J, of one or more L3 adjacencies.
The original and target Locator-Blocks can have different prefix lengths as long as the new Destination Address formed by combining the target Locator-Block with the Locator-Node, Function, and Argument as described in the pseudocode of Sections and is a valid IPv6 address.
The target Locator-Block and set of adjacencies are local properties of the End.XLBS SID on the SR segment endpoint node.
 The means by which an SR source node learns the target Locator-Block associated with an End.XLBS SID are outside the scope of this document. As examples, it could be learned via configuration or signaled by a controller.

 End.XLBS with NEXT-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.XLBS SID with the NEXT-CSID flavor and associated with the target Locator-Block B2/m, the SR segment endpoint node applies the procedure specified in with the lines N05 to N06 (of the pseudocode in) replaced as follows.

N05.1. Initialize an IPv6 address A equal to B2.
N05.2. Copy DA.Argument into the bits [m..(m+AL-1)] of A.
N06. Copy A to the Destination Address of the IPv6 header.

 End.XLBS with REPLACE-CSID
 When processing an IPv6 packet that matches a FIB entry locally instantiated as an End.XLBS SID with the REPLACE-CSID flavor and associated with the target Locator-Block B2/m, the SR segment endpoint node applies the procedure specified in with the line R20 (of the pseudocode in) replaced as follows.

R20.1. Initialize an IPv6 address A equal to B2.
R20.2. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [m..m+LNFL-1] of A.
R20.3. Write DA.Arg.Index into the bits
 [(128-ceiling(log_2(128/LNFL)))..127] of A.
R20.4. Copy A to the Destination Address of the IPv6 header.

 Control Plane
 provides an overview of the control plane protocols used for signaling of the SRv6 endpoint behaviors introduced by that document, including the base SRv6 endpoint behaviors that are extended in the present document.
 The CSID-flavored behaviors introduced by this document are advertised in the same manner as their base SRv6 endpoint behaviors using the SRv6 extensions for various routing protocols, such as:

 IS-IS

 OSPFv3

 BGP , ,

 BGP-LS

 PCEP

 The SR segment endpoint node MUST set the SID Argument bits to 0 when advertising a locally instantiated SID of this document in the routing protocol (e.g., IS-IS , OSPF , or BGP-LS).
 Signaling the SRv6 SID Structure is REQUIRED for all the SIDs introduced in this document. It is used by an SR source node to compress a SID list as described in .
The node initiating the SID advertisement MUST set the length values in the SRv6 SID Structure to match the format of the SID on the SR segment endpoint node. For example, for a SID of this document instantiated from a /48 SRv6 SID block and a /64 Locator, and having a 16-bit Function, the SRv6 SID Structure advertisement carries the following values.

 LBL: 48

 LNL: 16

 FL: 16

 AL: 48 (= 128-48-16-16)

 A local CSID may be advertised in the control plane individually and/or in combination with a global CSID instantiated on the same SR segment endpoint node, with the End behavior, and the same Locator-Block and flavor as the local CSID. A combined global and local CSID is advertised as follows:

 The SID Locator-Block is that shared by the global and local CSIDs

 The SID Locator-Node is that of the global CSID

 The SID Function is that of the local CSID

 The SID AL is equal to 128-LBL-LNL-FL and the SID Argument value is 0

 All other attributes of the SID (e.g., SRv6 endpoint behavior or algorithm) are those of the local CSID

 The combined advertisement of local CSIDs with a global CSID is needed in particular for control plane protocols mandating that the SID is a subnet of a locator advertised in the same protocol (e.g., and for advertising Adjacency SIDs in IS-IS and OSPFv3, respectively).
 For a segment list computed by a controller and signaled to an SR source node (e.g., via BGP or PCEP), the controller provides the ordered segment list comprising the uncompressed SIDs, with their respective behavior and structure, to the SR source node. The SR source node may then compress the SID list as described in .
 When a node receives an advertisement of a SID of this document that it does not support, it handles the advertisement as described in the corresponding control plane specification (e.g., Sections , , and of , Sections , , and of , and).

 Operational Considerations

 Flavor, Block, and CSID Length
 SRv6 is intended for use in a variety of networks that require different prefix lengths and SID numbering spaces. Each of the two flavors introduced in this document comes with its own recommendations for Locator-Block and CSID length, as specified in Sections and . These flavors are best suited for different environments, depending on the requirements of the network. For instance, larger CSID lengths may be more suitable for networks requiring ample SID numbering space, while smaller CSID lengths are better for compression efficiency. The two compression flavors allow the compressed segment list encoding to adapt to a range of requirements, with support for multiple compression levels. Network operators can choose the flavor that best suits their use case, deployment design, and network scale.
 Both CSID flavors can coexist in the same SR domain, on the same SR segment endpoint node, and even in the same segment list. However, operators should generally avoid instantiating SIDs of different CSID flavors within the same routing domain or Locator-Block since these SIDs have different length and allocation recommendations (see Sections , , and). In a multi-domain deployment, different flavors may be used in different routing domains of the SR domain.
 A deployment should use consistent LBLs and CSID lengths for all SIDs within a routing domain. Heterogeneous lengths, while possible, may impact the compression efficiency.
 The compressed segment list encoding works with various Locator-Block allocations. For example, each routing domain within the SR domain can be allocated a /48 Locator-Block from a global IPv6 block available to the operator or from a prefix allocated to SRv6 SIDs as discussed in .

 GIB/LIB Usage
 GIB and LIB usage is a local implementation and/or configuration decision; however, some guidelines for determining usage for specific SRv6 endpoint behaviors and recommendations are provided.
 The GIB number space is shared among all SR segment endpoint nodes using SRv6 locators under a Locator-Block space. The more SIDs assigned from this space, per node, the faster it is exhausted. Therefore, its use is prioritized for global segments, such as SIDs that identify a node.
 The LIB number space is unique per node. Each node can fully utilize the entire LIB number space without consideration for assignments at other nodes. Therefore, its use is prioritized for local segments, such as SIDs that identify services (of which there may be many) at nodes, cross-connects, or adjacencies.
 While a longer CSID length permits more flexibility in which SRv6 endpoint behaviors may be assigned from the GIB, it also reduces the compression efficiency.
 Given the previous Locator-Block and CSID length recommendations, the following GIB/LIB usage is recommended:

 NEXT-CSID:

 GIB: End

 LIB: End.X, End.T, End.DT4/6/46/2U/2M, End.DX4/6/2/2V (including large-scale pseudowire), End.B6.Encaps, End.B6.Encaps.Red, End.BM, End.LBS, and End.XLBS

 REPLACE-CSID:

 GIB: End, End.X, End.T, End.DT4/6/46/2U/2M, End.DX4/6/2/2V, End.B6.Encaps, End.B6.Encaps.Red, End.BM, End.LBS, and End.XLBS

 LIB: End.DX2/2V for large-scale pseudowire

 Any other allocation is possible but may lead to a suboptimal use of the CSID numbering space.

 Pinging a SID
 An SR source node may ping an SRv6 SID by sending an ICMPv6 echo request packet destined to the SRv6 SID. The SR source node may ping the target SID with a SID list comprising only that target SID or with a longer one that comprises two or more SIDs. In that case, the target SID is the last element in the SID list. This operation is illustrated in .
 When pinging a SID of this document, the SR source node MUST construct the IPv6 packet as described in , including computing the ICMPv6 checksum as described in .
 In particular, when pinging a SID of this document with a SID list comprising only the target SID, the SR source node places the SID with Argument value 0 in the Destination Address of the ICMPv6 echo request and computes the ICMPv6 checksum using this SID as the Destination Address in the IPv6 pseudo-header. The Argument value 0 allows the SID SR segment endpoint node () to identify itself as the ultimate destination of the packet and process the ICMPv6 payload.
Therefore, any existing IPv6 ping implementation can originate ICMP echo requests to a NEXT-CSID or REPLACE-CSID flavor SID with a SID list comprising only the target SID, provided that the user ensures that the SID Argument is 0.

 ICMP Error Processing
 When an IPv6 node encounters an error while processing a packet, it may report that error by sending an IPv6 error message to the packet source with an enclosed copy of the invoking packet. For the source of an invoking packet to process the ICMP error message, the ultimate Destination Address of the IPv6 header may be required.
 defines the logic that an SR source node follows to determine the ultimate destination of an invoking packet containing an SRH.
 For an SR source node that supports the compressed segment list encoding defined in this document, the logic to determine the ultimate destination is generalized as follows.

 If the Destination Address of the invoking IPv6 packet matches a known SRv6 SID, modify the invoking IPv6 packet by applying the SRv6 endpoint behavior associated with the matched SRv6 SID;

 Repeat until the application of the SRv6 endpoint behavior would result in the processing of the upper-layer header.

 The Destination Address of the resulting IPv6 packet may be used as the ultimate destination of the invoking IPv6 packet.
 Since the SR source node that needs to determine the ultimate destination is the same node that originally built the SID list in the invoking packet, it can perform this operation for all the SIDs in the packet.

 Applicability to Other SRv6 Endpoint Behaviors
 Future documents may extend the applicability of the NEXT-CSID and REPLACE-CSID flavors to other SRv6 endpoint behaviors.
 For an SRv6 endpoint behavior that can be used before the last position of a segment list, a CSID flavor is defined by reproducing the same logic as described in Sections and to determine the next SID in the SID list.

 Security Considerations
 discusses the security considerations for Segment Routing.
 describes the intra-SR-domain deployment model and how to secure it. describes the threats applicable to SRv6 and how to mitigate them.
 discusses the security considerations applicable to the SRv6 network programming framework, as well as the SR source node and SR segment endpoint node behaviors that it defines.
 This document introduces two new flavors, NEXT-CSID and REPLACE-CSID, for some of the SRv6 endpoint behaviors defined in and a method by which an SR source node may leverage the SIDs of these flavors to produce a compressed segment list encoding.
 This document also introduces two new SRv6 endpoint behaviors, End.LBS and End.XLBS, to preserve the efficiency of CSID compression in multi-domain environments.
 An SR source node constructs an IPv6 packet with a compressed segment list encoding as defined in Sections and of and . The paths that an SR source node may enforce using a compressed segment list encoding are the same, from a topology and service perspective, as those that an SR source node could enforce using the SIDs of .
 An SR segment endpoint node processes an IPv6 packet matching a locally instantiated SID as defined in , with the pseudocode modifications in of this document. These modifications change how the SR segment endpoint node determines the next SID in the packet but not the semantic of either the active or the next SID. For example, an adjacency segment instantiated with the End.X behavior remains an adjacency segment regardless of whether it uses the base End.X behavior defined in or a CSID flavor of that behavior. This document does not introduce any new SID semantic.
 Any other transit node processes the packet as described in .
 This document defines a new method of encoding the SIDs inside a SID list at the SR source node () and decoding them at the SR segment endpoint node (see Sections and), but it does not change how the SID list itself is encoded in the IPv6 packet nor the semantic of any segment that it comprises. Therefore, this document is subject to the same security considerations that are discussed in , , and .

 IANA Considerations

 SRv6 Endpoint Behaviors
 IANA has updated the reference of the following registrations from the "SRv6 Endpoint Behaviors" registry under the "Segment Routing" registry group () to point to this document and transfer change control to the IETF.

 SRv6 Endpoint Behaviors Registration List

 Value
 Description
 Reference

 43
 End with NEXT-CSID
 RFC 9800

 44
 End with NEXT-CSID & PSP
 RFC 9800

 45
 End with NEXT-CSID & USP
 RFC 9800

 46
 End with NEXT-CSID, PSP & USP
 RFC 9800

 47
 End with NEXT-CSID & USD
 RFC 9800

 48
 End with NEXT-CSID, PSP & USD
 RFC 9800

 49
 End with NEXT-CSID, USP & USD
 RFC 9800

 50
 End with NEXT-CSID, PSP, USP & USD
 RFC 9800

 52
 End.X with NEXT-CSID
 RFC 9800

 53
 End.X with NEXT-CSID & PSP
 RFC 9800

 54
 End.X with NEXT-CSID & USP
 RFC 9800

 55
 End.X with NEXT-CSID, PSP & USP
 RFC 9800

 56
 End.X with NEXT-CSID & USD
 RFC 9800

 57
 End.X with NEXT-CSID, PSP & USD
 RFC 9800

 58
 End.X with NEXT-CSID, USP & USD
 RFC 9800

 59
 End.X with NEXT-CSID, PSP, USP & USD
 RFC 9800

 85
 End.T with NEXT-CSID
 RFC 9800

 86
 End.T with NEXT-CSID & PSP
 RFC 9800

 87
 End.T with NEXT-CSID & USP
 RFC 9800

 88
 End.T with NEXT-CSID, PSP & USP
 RFC 9800

 89
 End.T with NEXT-CSID & USD
 RFC 9800

 90
 End.T with NEXT-CSID, PSP & USD
 RFC 9800

 91
 End.T with NEXT-CSID, USP & USD
 RFC 9800

 92
 End.T with NEXT-CSID, PSP, USP & USD
 RFC 9800

 93
 End.B6.Encaps with NEXT-CSID
 RFC 9800

 94
 End.B6.Encaps.Red with NEXT-CSID
 RFC 9800

 95
 End.BM with NEXT-CSID
 RFC 9800

 96
 End.LBS with NEXT-CSID
 RFC 9800

 97
 End.XLBS with NEXT-CSID
 RFC 9800

 101
 End with REPLACE-CSID
 RFC 9800

 102
 End with REPLACE-CSID & PSP
 RFC 9800

 103
 End with REPLACE-CSID & USP
 RFC 9800

 104
 End with REPLACE-CSID, PSP & USP
 RFC 9800

 105
 End.X with REPLACE-CSID
 RFC 9800

 106
 End.X with REPLACE-CSID & PSP
 RFC 9800

 107
 End.X with REPLACE-CSID & USP
 RFC 9800

 108
 End.X with REPLACE-CSID, PSP & USP
 RFC 9800

 109
 End.T with REPLACE-CSID
 RFC 9800

 110
 End.T with REPLACE-CSID & PSP
 RFC 9800

 111
 End.T with REPLACE-CSID & USP
 RFC 9800

 112
 End.T with REPLACE-CSID, PSP & USP
 RFC 9800

 114
 End.B6.Encaps with REPLACE-CSID
 RFC 9800

 115
 End.BM with REPLACE-CSID
 RFC 9800

 116
 End.DX6 with REPLACE-CSID
 RFC 9800

 117
 End.DX4 with REPLACE-CSID
 RFC 9800

 118
 End.DT6 with REPLACE-CSID
 RFC 9800

 119
 End.DT4 with REPLACE-CSID
 RFC 9800

 120
 End.DT46 with REPLACE-CSID
 RFC 9800

 121
 End.DX2 with REPLACE-CSID
 RFC 9800

 122
 End.DX2V with REPLACE-CSID
 RFC 9800

 123
 End.DT2U with REPLACE-CSID
 RFC 9800

 124
 End.DT2M with REPLACE-CSID
 RFC 9800

 127
 End.B6.Encaps.Red with REPLACE-CSID
 RFC 9800

 128
 End with REPLACE-CSID & USD
 RFC 9800

 129
 End with REPLACE-CSID, PSP & USD
 RFC 9800

 130
 End with REPLACE-CSID, USP & USD
 RFC 9800

 131
 End with REPLACE-CSID, PSP, USP & USD
 RFC 9800

 132
 End.X with REPLACE-CSID & USD
 RFC 9800

 133
 End.X with REPLACE-CSID, PSP & USD
 RFC 9800

 134
 End.X with REPLACE-CSID, USP & USD
 RFC 9800

 135
 End.X with REPLACE-CSID, PSP, USP & USD
 RFC 9800

 136
 End.T with REPLACE-CSID & USD
 RFC 9800

 137
 End.T with REPLACE-CSID, PSP & USD
 RFC 9800

 138
 End.T with REPLACE-CSID, USP & USD
 RFC 9800

 139
 End.T with REPLACE-CSID, PSP, USP & USD
 RFC 9800

 140
 End.LBS with REPLACE-CSID
 RFC 9800

 141
 End.XLBS with REPLACE-CSID
 RFC 9800

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Internet Protocol, Version 6 (IPv6) Specification

 This document specifies version 6 of the Internet Protocol (IPv6). It obsoletes RFC 2460.

 Segment Routing Architecture

 Segment Routing (SR) leverages the source routing paradigm. A node steers a packet through an ordered list of instructions, called "segments". A segment can represent any instruction, topological or service based. A segment can have a semantic local to an SR node or global within an SR domain. SR provides a mechanism that allows a flow to be restricted to a specific topological path, while maintaining per-flow state only at the ingress node(s) to the SR domain.
 SR can be directly applied to the MPLS architecture with no change to the forwarding plane. A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack of labels. The segment to process is on the top of the stack. Upon completion of a segment, the related label is popped from the stack.
 SR can be applied to the IPv6 architecture, with a new type of routing header. A segment is encoded as an IPv6 address. An ordered list of segments is encoded as an ordered list of IPv6 addresses in the routing header. The active segment is indicated by the Destination Address (DA) of the packet. The next active segment is indicated by a pointer in the new routing header.

 IPv6 Segment Routing Header (SRH)

 Segment Routing can be applied to the IPv6 data plane using a new type of Routing Extension Header called the Segment Routing Header (SRH). This document describes the SRH and how it is used by nodes that are Segment Routing (SR) capable.

 Segment Routing over IPv6 (SRv6) Network Programming

 The Segment Routing over IPv6 (SRv6) Network Programming framework enables a network operator or an application to specify a packet processing program by encoding a sequence of instructions in the IPv6 packet header.
 Each instruction is implemented on one or several nodes in the network and identified by an SRv6 Segment Identifier in the packet.
 This document defines the SRv6 Network Programming concept and specifies the base set of SRv6 behaviors that enables the creation of interoperable overlays with underlay optimization.

 Informative References

 Advertisement of Segment Routing Policies using BGP Link-State

 Individual

 Cisco Systems

 Huawei Technologies

 RtBrick Inc.

 Nvidia

 Work in Progress

 Advertising Segment Routing Policies in BGP

 Huawei Technologies

 Cisco Systems

 Cisco Systems

 Microsoft

 Google

 Work in Progress

 Concrete Mathematics: A Foundation for Computer Science

 Operation of Anycast Services

 As the Internet has grown, and as systems and networked services within enterprises have become more pervasive, many services with high availability requirements have emerged. These requirements have increased the demands on the reliability of the infrastructure on which those services rely.
 Various techniques have been employed to increase the availability of services deployed on the Internet. This document presents commentary and recommendations for distribution of services using anycast. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 BGP Overlay Services Based on Segment Routing over IPv6 (SRv6)

 This document defines procedures and messages for SRv6-based BGP services, including Layer 3 Virtual Private Network (L3VPN), Ethernet VPN (EVPN), and Internet services. It builds on "BGP/MPLS IP Virtual Private Networks (VPNs)" (RFC 4364) and "BGP MPLS-Based Ethernet VPN" (RFC 7432).

 Operations, Administration, and Maintenance (OAM) in Segment Routing over IPv6 (SRv6)

 This document describes how the existing IPv6 mechanisms for ping and traceroute can be used in a Segment Routing over IPv6 (SRv6) network. The document also specifies the OAM flag (O-flag) in the Segment Routing Header (SRH) for performing controllable and predictable flow sampling from segment endpoints. In addition, the document describes how a centralized monitoring system performs a path continuity check between any nodes within an SRv6 domain.

 IGP Flexible Algorithm

 IGP protocols historically compute the best paths over the network based on the IGP metric assigned to the links. Many network deployments use RSVP-TE or Segment Routing - Traffic Engineering (SR-TE) to steer traffic over a path that is computed using different metrics or constraints than the shortest IGP path. This document specifies a solution that allows IGPs themselves to compute constraint-based paths over the network. This document also specifies a way of using Segment Routing (SR) Prefix-SIDs and SRv6 locators to steer packets along the constraint-based paths.

 IS-IS Extensions to Support Segment Routing over the IPv6 Data Plane

 The Segment Routing (SR) architecture allows a flexible definition of the end-to-end path by encoding it as a sequence of topological elements called "segments". It can be implemented over the MPLS or the IPv6 data plane. This document describes the IS-IS extensions required to support SR over the IPv6 data plane.
 This document updates RFC 7370 by modifying an existing registry.

 OSPFv3 Extensions for Segment Routing over IPv6 (SRv6)

 The Segment Routing (SR) architecture allows a flexible definition of the end-to-end path by encoding it as a sequence of topological elements called segments. It can be implemented over an MPLS or IPv6 data plane. This document describes the OSPFv3 extensions required to support SR over the IPv6 data plane.

 Border Gateway Protocol - Link State (BGP-LS) Extensions for Segment Routing over IPv6 (SRv6)

 Segment Routing over IPv6 (SRv6) allows for a flexible definition of end-to-end paths within various topologies by encoding paths as sequences of topological or functional sub-paths called "segments". These segments are advertised by various protocols such as BGP, IS-IS, and OSPFv3.
 This document defines extensions to BGP - Link State (BGP-LS) to advertise SRv6 segments along with their behaviors and other attributes via BGP. The BGP-LS address-family solution for SRv6 described in this document is similar to BGP-LS for SR for the MPLS data plane, which is defined in RFC 9085.

 Segment Routing over IPv6 (SRv6) Segment Identifiers in the IPv6 Addressing Architecture

 Segment Routing over IPv6 (SRv6) uses IPv6 as the underlying data plane. Thus, Segment Identifiers (SIDs) used by SRv6 can resemble IPv6 addresses and behave like them while exhibiting slightly different behaviors in some situations. This document explores the characteristics of SRv6 SIDs and focuses on the relationship of SRv6 SIDs to the IPv6 Addressing Architecture. This document allocates and makes a dedicated prefix available for SRv6 SIDs.

 Path Computation Element Communication Protocol (PCEP) Extensions for IPv6 Segment Routing

 Segment Routing (SR) can be used to steer packets through a network using the IPv6 or MPLS data plane, employing the source routing paradigm.
 An SR Path can be derived from a variety of mechanisms, including an IGP Shortest Path Tree (SPT), explicit configuration, or a Path Computation Element (PCE).
 Since SR can be applied to both MPLS and IPv6 data planes, a PCE should be able to compute an SR Path for both MPLS and IPv6 data planes. The Path Computation Element Communication Protocol (PCEP) extension and mechanisms to support SR-MPLS have been defined. This document outlines the necessary extensions to support SR for the IPv6 data plane within PCEP.

 Complete Pseudocodes
 The content of this section is purely informative rendering of the pseudocodes of with the modifications in this document. This rendering may not be used as a reference.

 End with NEXT-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

 Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop or Destination Options of a packet matching a FIB entry locally instantiated as an End SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End SID with the NEXT-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.X with NEXT-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.X SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Submit the packet to the IPv6 module for transmission
 to the new destination via a member of J.

 Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop or Destination Options of a packet matching a FIB entry locally instantiated as an End.X SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.
N09. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.X SID with the NEXT-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.T with NEXT-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.T SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Set the packet's associated FIB table to T.
N08.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15.1. Set the packet's associated FIB table to T.
S15.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

 Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop or Destination Options of a packet matching a FIB entry locally instantiated as an End.T SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Set the packet's associated FIB table to T.
N08.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
N09. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.T SID with the NEXT-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.B6.Encaps with NEXT-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.B6.Encaps SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push a new IPv6 header with its own SRH containing B.
N08.2. Set the outer IPv6 SA to A.
N08.3. Set the outer IPv6 DA to the first SID of B.
N08.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
N08.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Push a new IPv6 header with its own SRH containing B.
S16. Set the outer IPv6 SA to A.
S17. Set the outer IPv6 DA to the first SID of B.
S18. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
S19. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.

 Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop or Destination Options of a packet matching a FIB entry locally instantiated as an End.B6.Encaps SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push a new IPv6 header with its own SRH containing B.
N08.2. Set the outer IPv6 SA to A.
N08.3. Set the outer IPv6 DA to the first SID of B.
N08.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
N08.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
N09. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.B6.Encaps SID with the NEXT-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.BM with NEXT-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.BM SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push the MPLS label stack for B.
N08.2. Submit the packet to the MPLS engine for transmission.
N09. }
S02. If (Segments Left == 0) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
 with Code 0 (Hop limit exceeded in transit),
 interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
 with Code 0 (Erroneous header field encountered)
 and Pointer set to the Segments Left field,
 interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1.
S13. Decrement Segments Left by 1.
S14. Update IPv6 DA with Segment List[Segments Left].
S15. Push the MPLS label stack for B.
S16. Submit the packet to the MPLS engine for transmission.

 Before processing the upper-layer header or any IPv6 extension header other than Hop-by-Hop or Destination Options of a packet matching a FIB entry locally instantiated as an End.BM SID with the NEXT-CSID flavor:

N01. If (DA.Argument != 0) {
N02. If (IPv6 Hop Limit <= 1) {
N03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
N04. }
N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the
 Destination Address.
N06. Set the bits [(LBL+AL)..127] of the Destination Address to
 zero.
N07. Decrement IPv6 Hop Limit by 1.
N08.1. Push the MPLS label stack for B.
N08.2. Submit the packet to the MPLS engine for transmission.
N09. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.BM SID with the NEXT-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End with REPLACE-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
S16. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End SID with the REPLACE-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.X with REPLACE-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.X SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10. Submit the packet to the IPv6 module for transmission to
 the new destination via a member of J.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21. Submit the packet to the IPv6 module for transmission to the
 new destination via a member of J.
S16. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.X SID with the REPLACE-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.T with REPLACE-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.T SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10.1. Set the packet's associated FIB table to T.
R10.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21.1. Set the packet's associated FIB table to T.
R21.2. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the new destination.
S16. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.T SID with the REPLACE-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.B6.Encaps with REPLACE-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.B6.Encaps SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10.1. Push a new IPv6 header with its own SRH containing B.
R10.2. Set the outer IPv6 SA to A.
R10.3. Set the outer IPv6 DA to the first SID of B.
R10.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R10.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21.1. Push a new IPv6 header with its own SRH containing B.
R21.2. Set the outer IPv6 SA to A.
R21.3. Set the outer IPv6 DA to the first SID of B.
R21.4. Set the outer Payload Length, Traffic Class, Flow Label,
 Hop Limit, and Next Header fields.
R21.5. Submit the packet to the egress IPv6 FIB lookup for
 transmission to the next destination.
S16. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.B6.Encaps SID with the REPLACE-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 End.BM with REPLACE-CSID
 When processing the SRH of a packet matching a FIB entry locally instantiated as an End.BM SID with the REPLACE-CSID flavor:

S01. When an SRH is processed {
S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or
 Segment List[0][DA.Arg.Index-1] == 0)) {
S03. Stop processing the SRH and proceed to process the next
 header in the packet, whose type is identified by
 the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
R01. If (DA.Arg.Index != 0) {
R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {
R03. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R04. }
R05. Decrement DA.Arg.Index by 1.
R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {
R07. Decrement Segments Left by 1.
R08. Decrement IPv6 Hop Limit by 1.
R09. Update IPv6 DA with Segment List[Segments Left]
R10.1. Push the MPLS label stack for B.
R10.2. Submit the packet to the MPLS engine for transmission.
R11. }
R12. } Else {
R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){
R14. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet.
R15. }
R16. Decrement Segments Left by 1.
R17. Set DA.Arg.Index to (128/LNFL - 1).
R18. }
R19. Decrement IPv6 Hop Limit by 1.
R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits
 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6
 header.
R21.1. Push the MPLS label stack for B.
R21.2. Submit the packet to the MPLS engine for transmission.
S16. }

 When processing the upper-layer header of a packet matching a FIB entry locally instantiated as an End.BM SID with the REPLACE-CSID flavor:

S01. If (upper-layer header type is allowed by local configuration) {
S02. Proceed to process the upper-layer header
S03. } Else {
S04. Send an ICMP Parameter Problem to the Source Address
 with Code 4 (SR Upper-layer Header Error)
 and Pointer set to the offset of the upper-layer header,
 interrupt packet processing, and discard the packet.
S05. }

 Acknowledgements
 The authors would like to thank , , , , , , , and for their insightful feedback and suggestions.
 The authors would also like to thank , , , , , and for their thorough review of this document.

 Contributors

 ZTE Corporation

 China

 liu.aihua@zte.com.cn

 Alibaba

 USA

 d.cai@alibaba-inc.com

 Cisco Systems, Inc.

 Canada

 ddukes@cisco.com

 Futurewei Technologies Ltd.

 USA

 james.n.guichard@futurewei.com

 Huawei Technologies

 China

 c.l@huawei.com

 NTT Network Innovations

 USA

 robert@raszuk.net

 Cisco Systems, Inc.

 India

 ketant.ietf@gmail.com

 Bell Canada

 Canada

 daniel.voyer@bell.ca

 Broadcom

 Israel

 shay.zadok@broadcom.com

 Authors' Addresses

 China Mobile

 China

 chengweiqiang@chinamobile.com

 Cisco Systems, Inc.

 Belgium

 cf@cisco.com

 Huawei Technologies

 China

 lizhenbin@huawei.com

 Orange

 France

 bruno.decraene@orange.com

 Cisco Systems, Inc.

 France

 fclad.ietf@gmail.com

