I nternet Engi neering Task Force (IETF) JM Valin

Request for Comments: 6716 Mozill a Corporation
Cat egory: Standards Track K. Vos
| SSN: 2070- 1721 Skype Technol ogi es S. A

T. Terriberry
Mozi |l I a Corporation
Sept enber 2012

Definition of the Opus Audi o Codec
Abstract

Thi s docunent defines the Opus interactive speech and audi o codec.
Qpus is designed to handle a wi de range of interactive audio
applications, including Voice over |IP, videoconferencing, in-ganme
chat, and even live, distributed nusic performances. It scales from
| ow bitrate narrowband speech at 6 kbit/s to very high quality stereo
nmusi ¢ at 510 kbit/s. Opus uses both Linear Prediction (LP) and the
Modi fi ed Di screte Cosine Transform (MDCT) to achi eve good conpression
of both speech and nusi c.

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc6716

Valin, et al. St andards Track [ Page 1]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

The licenses granted by the | ETF Trust to this RFC under Section 3.c
of the Trust Legal Provisions shall also include the right to extract
text from Sections 1 through 8 and Appendi x A and Appendi x B of this
RFC and create derivative works fromthese extracts, and to copy,
publish, display and distribute such derivative works in any medi um
and for any purpose, provided that no such derivative work shall be
presented, displayed or published in a manner that states or inplies
that it is part of this RFC or any other | ETF Docunent.

Tabl e of Contents

1. Introduction ... .. e 5
1.1. Notation and Conventions .......... ... 6
2. Opus CodeC OVEIVI BW . .ottt e e e e e e e 8
2.1, Control Parameters ........ ... 10
2.0.0. Bitrate ... 10
2.1.2. Number of Channels (Mno/Stereo) ................... 11
2.1.3. Audio Bandwidth ....... ... . .. .. . . . . . . . .. 11
2.1.4. Frame Duration .......... . . ... i 11
2.1.5. Compl exity ..o 11
2.1.6. Packet Loss Resilience ........... ... ... ... . ...... 12
2.1.7. Forward Error Correction (FEC) ..................... 12
2.1.8. Constant/Variable Bitrate .......................... 12
2.1.9. Discontinuous Transmission (DTX) ................... 13
3. Internal Fram ng . ... ... 13
3.1, The TOC Byt @ ..ot e e 13
3.2. Frame PackinNg ......... . e 16
3.2.1. Frame Length Coding .......... ... .. . . .. 16
3.2.2. Code 0: One Frane in the Packet .................... 16

3.2.3. Code 1: Two Franes in the Packet, Each with
Equal Conpressed Size ........ ... ... 17

3.2.4. Code 2: Two Franes in the Packet, wth

Different Conpressed Sizes ............ ... 17

Valin, et al. St andards Track [ Page 2]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Val i n,

3.2.5. Code 3: A Signal ed Nunber of Franmes in the Packet ..18
3.3, EXanpl S .o 21
3.4. Receiving Malformed Packets ......... ... ... . ... .. ... 22
QEUS DeCoder ... 23
4.1. Range Decoder . .... ... ... 23
4.1.1. Range Decoder Initialization ....................... 25
4.1.2. Decoding Symbols ....... ... . . . . . e 25
4.1.3. Aternate Decoding Methods .......... ... ... ... ... 27
4.1.4. Decoding Raw Bits ...... ... . 29
4.1.5. Decoding Uniformy Distributed Integers ............ 29
4.1.6. Current Bit Usage ......... ... 30
4.2, SILK DeCOder ...t 32
4.2.1. SILK Decoder Modules ......... ... . ..., 32
4.2.2. LP Layer Organization ............. i, 33
4.2.3. Header Bits ..... ... ... 35
4.2.4. Per-Frame LBRR Flags ........ ... ... 36
4.2.5. LBRR Frames ... ..... ... 36
4.2.6. Regular SILK Frames ............. iy 37
4.2.7. SILK Frame Contents ............. ... i, 37
4.2.7.1. Stereo Prediction Weights ................. 40
4.2.7.2. Md-Only Flag .........ciiii . 42
4.2.7.3. Frame Type ... ... 43
4.2.7.4. Subframe Gains ........... . ... . 44

4.2.7.5. Normalized Line Spectral Frequency

(LSF) and Linear Predictive Coding (LPC

Coeffieients ........ ... .. . . .. 46
4.2.7.6. Long-Term Prediction (LTP) Paraneters ..... 74
4.2.7.7. Linear Congruential Generator (LCG Seed ..86
4.2.7.8. Excitation ........ ... . ... . 86
4.2.7.9. SILK Frame Reconstruction ................. 98
4.2.8. Stereo Unm Xi NG .. ..o e 102
4.2.9. Resanpling ... 103
4.3. CELT DeCoder . .. ...t e e 104
4.3.1. Transient DecodinNg .......... ... 108
4.3.2. Energy Envelope Decoding ............ . ... . .. ... 108
4.3.3. Bit Allocation .......... ... 110
4.3.4. Shape Decoding ......... .. 116
4.3.5. Anti-collapse Processing .............c ... 120
4.3.6. Denormalization ........... .. . .. ... 121
4.3.7. Inverse MDCT ... .. e e 121
4.4. Packet Loss Concealnent (PLC) .............. . ... 122
4.4.1. Cock Drift Conpensation .......................... 122
4.5, Configuration Switching .......... ... .. . ... . . . . . ... 123
4.5.1. Transition Side Information (Redundancy) .......... 124
4.5.2. State Reset . ...... ... 127
4.5.3. Summary of Transitions .............. ... ... .. ...... 128
QuUS ENncoder ... .. 131
5.1. Range ENcoder . ......... . ... e 132

et al. St andards Track [ Page 3]



RFC 6716 Interactive Audi o Codec Sept enber 2012

5.1.1. Encoding Synbols ......... ... .. . . . . .. e 133

5.1.2. Alternate Encoding Methods ........................ 134

5.1.3. Encoding Raw Bits ....... ... ... .. 135

5.1.4. Encoding Uniformy Distributed Integers ........... 135

5.1.5. Finalizing the Stream ........... ... ... .. .. ... ..... 135

5.1.6. Current Bit Usage ......... ... .. 136

5.2, SILK Encoder ... ... .. 136
5.2.1. Sanple Rate Conversion ............ .. ... 137

5.2.2. Stereo MXing . ... 137

5.2.3. SILK Core Encoder ......... ... .. i, 138

5.3. CELT Encoder .. ... ... 150
5.3.1. Pitch Pre-filter ...... ... . .. . . . . . . .. 150

5.3.2. Bands and Normalization ........... ... ... ... .. .... 151

5.3.3. Energy Envel ope Quantization ...................... 151

5.3.4. Bit Allocation ....... ... . . .. i, 151

5.3.5. Stereo DeCiSiONS . ... ... i 152

5.3.6. Tine-Frequency Decision ............ .. ... ... 153

5.3.7. Spreading Values Decision ......................... 153

5.3.8. Spherical Vector Quantization ..................... 154

6. ConformanNCe .. ... ... . . e 155
6. 1. TeStiNg ...t 155
6.2. QoUS CUSEOM . .. e 156

7. Security Considerati ons ........ .. ... 157
8. Acknow edgemBnt S ... .. ... e 158
9. Ref erenCes ... 159
9.1. Normative References ........... ... i, 159
9.2. Informative References ....... ... . ... . . . . . . .. . . .. 159
Appendi x A. Reference Inplenentation ........... ... ... .. ... ...... 163
A 1. Extracting the Source ....... ... . .. .. . i 164

A 2. Up-to-Date Inplenentation ......... .. ... ... . . . ... 164
A. 3. Baseb64-Encoded Source Code ........... ..., 164

A 4. Test VeCt OIS ... 321
Appendi x B. Self-Delimting Framing ............... . . ... 321

Valin, et al. St andards Track [ Page 4]



RFC 6716 Interactive Audi o Codec Sept enber 2012

1

I ntroduction

The Opus codec is a real-tinme interactive audio codec designed to
meet the requirements described in [REQU REMENTS]. It is conposed of
a |l ayer based on Linear Prediction (LP) [LPC] and a | ayer based on
the Modified Discrete Cosine Transform (MDCT) [MDCT]. The nmin idea
behind using two layers is as follows: in speech, linear prediction
techni ques (such as Code-Excited Linear Prediction, or CELP) code | ow
frequencies nore efficiently than transform(e.g., MDCT) domain
techni ques, while the situation is reversed for nusic and hi gher
speech frequencies. Thus, a codec with both |ayers avail abl e can
operate over a wider range than either one al one and can achieve
better quality by conbining themthan by using either one

i ndi vidually.

The primary normative part of this specification is provided by the
source code in Appendix A. Only the decoder portion of this software
is normative, though a significant anount of code is shared by both
the encoder and decoder. Section 6 provides a decoder confornance
test. The decoder contains a great deal of integer and fixed-point
arithmetic that needs to be perforned exactly, including all rounding
consi derations, so any useful specification requires domain-specific
synbol i c | anguage to adequately define these operations.

Additionally, any conflict between the synbolic representation and
the included reference inplenentation nust be resolved. For the
practical reasons of conpatibility and testability, it would be
advant ageous to give the reference inplenmentation priority in any

di sagreenment. The C language is also one of the nbost widely
under st ood, human-readabl e synbolic representations for machine
behavior. For these reasons, this RFC uses the reference

i mpl enentation as the sole synbolic representation of the codec.

Whil e the synbolic representation is unanbi guous and conplete, it is
not always the easiest way to understand the codec’ s operation. For
this reason, this docunent al so describes significant parts of the
codec in prose and takes the opportunity to explain the rationale
behi nd many of the nore surprising elenents of the design. These
descriptions are intended to be accurate and informative, but the
limtations of comon English sonmetines result in anmbiguity, so it is
expected that the reader will always read them al ongsi de the synbolic
representation. Nunerous references to the inplenentation are
provided for this purpose. The descriptions sonmetines differ from
the reference in ordering or through nmathematical sinplification

wher ever such devi ati on nakes an expl anati on easier to understand.

For exanple, the right shift and left shift operations in the
reference inplenentation are often described using division and

Valin, et al. St andards Track [ Page 5]



RFC 6716 Interactive Audi o Codec Sept enber 2012

multiplication in the text. |In general, the text is focused on the
"what" and "why" while the synbolic representation nost clearly
provides the "how'.

1.1. Not ati on and Conventi ons

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [ RFC2119].

Various operations in the codec require bit-exact fixed-point

behavi or, even when witing a floating point inplenentation. The
notation "Q<n>", where n is an integer, denotes the nunber of binary
digits to the right of the decimal point in a fixed-point nunber.

For exanple, a signed QL4 value in a 16-bit word can represent val ues
from-2.0 to 1.99993896484375, inclusive. This notation is for

i nformati onal purposes only. Arithnmetic, when described, always
operates on the underlying integer. For exanple, the text wll
explicitly indicate any shifts required after a nultiplication

Expressions, where included in the text, follow C operator rules and
precedence, with the exception that the syntax "x**y" indicates x
raised to the power y. The text also makes use of the follow ng
functions.

1.1.1. nin(x,y)
The small est of two values x and vy.

1.1.2. max(x,y)
The largest of two values x and vy.

1.1.3. clanmp(lo,x,hi)

clamp(lo, x,hi) = max(lo, mn(x,hi))

Wth this definition, if lo > hi, then lo is returned.

1.1.4. sign(x)

The sign of x, i.e.
(-1, x <0
sign(x) =< 0, x ==
( 1, x>0

Valin, et al. St andards Track [ Page 6]



RFC 6716 Interactive Audi o Codec Sept enber 2012

1.1.5. abs(x)

The absol ute value of x, i.e.

abs(x) = sign(x)*x

1.1.6. floor(f)

The | argest integer z such that z <= f.
1.1.7. ceil(f)

The smallest integer z such that z >= f.
1.1.8. round(f)

The integer z nearest to f, with ties rounded towards negative
infinity, i.e.

round(f) = ceil (f - 0.5)
1.1.9. log2(f)
The base-two | ogarithm of f
1.1.10. ilog(n)

The m ni mum nunber of bits required to store a positive integer nin
binary, or 0 for a non-positive integer n

(0, n<=0
ilog(n) =<
( floor(log2(n))+1, n >0
Exanpl es:
o ilog(-1) =0
o ilog(0) =0
o ilog(l) =1
o ilog(2) =2
o ilog(3) =2
o ilog(4) =3

Valin, et al. St andards Track [ Page 7]



RFC 6716 Interactive Audi o Codec Sept enber 2012

2.

o ilog(7) =3
Qpus Codec Overvi ew

The Qpus codec scales from 6 kbit/s narrowband nmono speech to

510 kbit/s fullband stereo nusic, with algorithnmc delays ranging
from5 ns to 65.2 ms. At any given tinme, either the LP layer, the
MDCT | ayer, or both, nay be active. 1t can seanm essly switch between
all of its various operating nodes, giving it a great deal of
flexibility to adapt to varying content and network conditions

wi t hout renegotiating the current session. The codec allows input
and out put of various audi o bandw dths, defined as foll ows:

| mbbreviation | Audi o Bandwi dth | Sample Rate (Effective) |
| N8 (narrowband) g s T 8 kit |
I MB (nedi um band) I 6 kHz I 12 kHz I
I VB (w deband) I 8 kHz I 16 kHz I
I SWB (super -w deband) I 12 kHz I 24 kHz I
I FB (ful | band) I 20 kHz (*) I 48 kHz I
i e e e e e e e +
Table 1

(*) Although the sanpling theoremallows a bandwidth as |large as hal f
the sanpling rate, Opus never codes audi o above 20 kHz, as that is
the generally accepted upper linmt of hunman hearing.

Qpus defines super-w deband (SWB) with an effective sanple rate of

24 kHz, unlike sone other audio coding standards that use 32 kHz.
This was chosen for a nunber of reasons. The band |ayout in the MDCT
| ayer naturally allows skipping coefficients for frequencies over

12 kHz, but does not allow cleanly dropping just those frequencies
over 16 kHz. A sanple rate of 24 kHz al so nakes resanpling in the
MDCT | ayer easier, as 24 evenly divides 48, and when 24 kHz is
sufficient, it can save conputation in other processing, such as
Acoustic Echo Cancellation (AEC). Experinental changes to the band

| ayout to allow a 16 kHz cutoff (32 kHz effective sanple rate) showed
potential quality degradations at other sanple rates, and, at typica
bitrates, the nunmber of bits saved by using such a cutoff instead of
coding in fullband (FB) node is very small. Therefore, if an
application wishes to process a signal sanmpled at 32 kHz, it should
just use FB.

Valin, et al. St andards Track [ Page 8]



RFC 6716 Interactive Audi o Codec Sept enber 2012

The LP layer is based on the SILK codec [SILK]. It supports NB, M
or WB audio and frame sizes from10 ns to 60 ns, and requires an
additional 5 nms | ook-ahead for noise shaping estimation. A smal
additional delay (up to 1.5 ns) may be required for sanpling rate
conversion. Like Vorbis [VORBI S-VEBSI TE] and many ot her nodern
codecs, SILK is inherently designed for variable bitrate (VBR)

codi ng, though the encoder can al so produce constant bitrate (CBR)
streans. The version of SILK used in OQpus is substantially nodified
from and not conpatible with, the stand-al one SILK codec previously
depl oyed by Skype. This docunment does not serve to define that
format, but those interested in the original SILK codec should see

[ SI LK] instead.

The MDCT | ayer is based on the Constrai ned-Energy Lapped Transform
(CELT) codec [CELT]. It supports NB, WB, SWB, or FB audio and frame
sizes from2.5 ms to 20 ms, and requires an additional 2.5 ns | ook-
ahead due to the overlapping MDCT wi ndows. The CELT codec is

i nherently designed for CBR coding, but unlike nmany CBR codecs, it is
not limted to a set of predeternined rates. It internally allocates
bits to exactly fill any given target budget, and an encoder can
produce a VBR stream by varying the target on a per-frame basis. The
MDCT | ayer is not used for speech when the audi o bandwi dth is WB or
less, as it is not useful there. On the other hand, non-speech
signals are not always adequately coded using |inear prediction
Therefore, the MDCT | ayer should be used for nusic signals.

A "Hybrid" node allows the use of both |layers sinultaneously with a
frane size of 10 or 20 nms and an SWB or FB audi o bandwi dth. The LP
| ayer codes the | ow frequencies by resanpling the signal down to WB.
The MDCT | ayer follows, coding the high frequency portion of the
signal. The cutoff between the two lies at 8 kHz, the nmaxi num \\B
audi o bandwi dth. |In the MDCT | ayer, all bands bel ow 8 kHz are

di scarded, so there is no codi ng redundancy between the two | ayers.

The sanple rate (in contrast to the actual audi o bandw dth) can be
chosen i ndependently on the encoder and decoder side, e.g., a

full band signal can be decoded as wi deband, or vice versa. This
approach ensures a sender and receiver can always interoperate,
regardl ess of the capabilities of their actual audi o hardware.
Internally, the LP |l ayer always operates at a sanple rate of twce
the audi o bandwi dth, up to a maxi mum of 16 kHz, which it continues to
use for SWB and FB. The decoder sinply resanples its output to
support different sanple rates. The MDCT | ayer always operates
internally at a sanple rate of 48 kHz. Since all the supported
sanple rates evenly divide this rate, and since the decoder may
easily zero out the high frequency portion of the spectrumin the
frequency domain, it can sinply decimate the MDCT | ayer output to
achi eve the other supported sanple rates very cheaply.

Valin, et al. St andards Track [ Page 9]



RFC 6716 Interactive Audi o Codec Sept enber 2012

After conversion to the comon, desired output sanple rate, the
decoder sinply adds the output fromthe two |ayers together. To
conpensate for the different |ook-ahead required by each | ayer, the
CELT encoder input is delayed by an additional 2.7 ns. This ensures
that | ow frequencies and high frequencies arrive at the sane tine.
This extra delay may be reduced by an encoder by using |ess | ook-
ahead for noise shaping or using a sinpler resanpler in the LP |ayer,
but this will reduce quality. However, the base 2.5 nms | ook-ahead in
the CELT | ayer cannot be reduced in the encoder because it is needed
for the MDCT overl ap, whose size is fixed by the decoder.

Both | ayers use the sane entropy coder, avoiding any waste from
"paddi ng bits" between them The hybrid approach nmakes it easy to
support both CBR and VBR coding. Although the LP layer is VBR, the
bit allocation of the MDCT |ayer can produce a final streamthat is
CBR by using all the bits left unused by the LP | ayer.

2.1. Control Paraneters

The Qpus codec includes a nunber of control paraneters that can be
changed dynamically during regul ar operation of the codec, w thout
interrupting the audio streamfromthe encoder to the decoder. These
paraneters only affect the encoder since any inpact they have on the
bitstreamis signaled in-band such that a decoder can decode any Opus
stream wi t hout any out-of-band signaling. Any Qpus inplenentation
can add or nodify these control paraneters wi thout affecting
interoperability. The nost inportant encoder control paraneters in
the reference encoder are |listed bel ow

2.1.1. Bitrate
Qpus supports all bitrates from6 kbit/s to 510 kbit/s. Al other
paraneters being equal, higher bitrate results in higher quality.
For a frame size of 20 nms, these are the bitrate "sweet spots" for
Qpus in various configurations:
0 8-12 kbit/s for NB speech
0 16-20 kbit/s for WB speech
0 28-40 kbit/s for FB speech

0 48-64 kbit/s for FB npbno nusic, and

0O 64-128 kbit/s for FB stereo nusic.

Valin, et al. St andards Track [ Page 10]



RFC 6716 Interactive Audi o Codec Sept enber 2012

2.1.2. Nunber of Channels (Mono/ Stereo)

Qpus can transnit either nmono or stereo frames within a single
stream \Wen decoding a nono frame in a stereo decoder, the left and
right channels are identical, and when decoding a stereo frame in a
nono decoder, the nono output is the average of the left and right
channels. |In sone cases, it is desirable to encode a stereo input
streamin nono (e.g., because the bitrate is too |low to encode stereo
with sufficient quality). The nunber of channels encoded can be
selected in real-tine, but by default the reference encoder attenpts
to make the best decision possible given the current bitrate.

2.1.3. Audi o Bandwi dth

The audi o bandwi dt hs supported by Cpus are listed in Table 1. Just
like for the nunber of channels, any decoder can decode audio that is
encoded at any bandwi dth. For exanple, any Qpus decoder operating at
8 kHz can decode an FB Qpus frane, and any Opus decoder operating at
48 kHz can decode an NB frane. Similarly, the reference encoder can
take a 48 kHz input signal and encode it as NB. The higher the audio
bandwi dth, the higher the required bitrate to achi eve acceptabl e
quality. The audio bandwi dth can be explicitly specified in real -
time, but, by default, the reference encoder attenpts to make the
best bandwi dth deci sion possible given the current bitrate.

2.1.4. Frane Duration

Qpus can encode frames of 2.5, 5, 10, 20, 40, or 60 ms. It can also
conmbine multiple frames into packets of up to 120 ns. For real-tine
applications, sending fewer packets per second reduces the bitrate,
since it reduces the overhead fromI|P, UDP, and RTP headers.

However, it increases |latency and sensitivity to packet |osses, as

| osi ng one packet constitutes a |oss of a bigger chunk of audio.
Increasing the frane duration also slightly inproves coding
efficiency, but the gain beconmes snmall for frame sizes above 20 ns.
For this reason, 20 ns franes are a good choice for nost
applications.

2.1.5. Complexity
There are various aspects of the Qpus encodi ng process where trade-
of fs can be nade between CPU conplexity and quality/bitrate. 1In the
ref erence encoder, the conplexity is selected using an integer fromO
to 10, where 0 is the I owest conplexity and 10 is the highest.
Exanpl es of computations for which such trade-offs may occur are:

0 The order of the pitch analysis whitening filter [WH TEN NG,

Valin, et al. St andards Track [ Page 11]



RFC 6716 Interactive Audi o Codec Sept enber 2012

2.

2.

2.

0 The order of the short-term noise shaping filter

o The nunber of states in delayed decision quantization of the
resi dual signal, and

o0 The use of certain bitstream features such as variable time-
frequency resolution and the pitch post-filter.

1.6. Packet Loss Resilience

Audi o codecs often exploit inter-frame correlations to reduce the
bitrate at a cost in error propagation: after |osing one packet,
several packets need to be received before the decoder is able to
accurately reconstruct the speech signal. The extent to which Opus
exploits inter-frame dependencies can be adjusted on the fly to
choose a trade-off between bitrate and amount of error propagation

1.7. Forward Error Correction (FEC

Anot her nechani sm provi di ng robust ness agai nst packet loss is the in-
band Forward Error Correction (FEC). Packets that are determined to
contain perceptually inportant speech information, such as onsets or
transients, are encoded again at a lower bitrate and this re-encoded
information is added to a subsequent packet.

1.8. Constant/Variable Bitrate

Qous is nore efficient when operating with variable bitrate (VBR)
which is the default. When |low |l atency transm ssion is required over
a relatively slow connection, then constrai ned VBR can al so be used.
This uses VBRin a way that sinmulates a "bit reservoir"” and is

equi val ent to what MP3 (MPEG 1, Layer 3) and AAC (Advanced Audi o
Coding) call CBR (i.e., not true CBR due to the bit reservoir). In
sonme (rare) applications, constant bitrate (CBR) is required. There
are two nmain reasons to operate in CBR node

0 Wien the transport only supports a fixed size for each conpressed
frane, or

0 \When encryption is used for an audio streamthat is either highly
constrained (e.g., yes/no, recorded pronpts) or highly sensitive
[ SRTP- VBR] .

Bitrate may still be allowed to vary, even with sensitive data, as
long as the variation is not driven by the input signal (for exanple,
to match changi ng network conditions). To achieve this, an
application should still run Opus in CBR node, but change the target
rate before each packet.

Valin, et al. St andards Track [ Page 12]



RFC 6716 Interactive Audi o Codec Sept enber 2012

2.1.9. Discontinuous Transm ssion (DTX)

Di sconti nuous Transm ssion (DTX) reduces the bitrate during silence
or background noise. Wen DIX is enabled, only one frame is encoded
every 400 mlliseconds.

3. Internal Fram ng

The Qpus encoder produces "packets", which are each a contiguous set
of bytes neant to be transnmitted as a single unit. The packets
descri bed here do not include such things as IP, UDP, or RTP headers,
which are normally found in a transport-layer packet. A single
packet may contain nmultiple audio franes, so long as they share a
common set of paranmeters, including the operating node, audio
bandwi dt h, frame size, and channel count (mono vs. stereo). This
section describes the possible conbinations of these paraneters and
the internal fram ng used to pack multiple frames into a single
packet. This framing is not self-delimting. Instead, it assunes
that a |l ower layer (such as UDP or RTP [ RFC3550] or (Ogg [ RFC3533] or
Mat r oska [ MATROSKA- VEEBSI TE]) will comruni cate the I ength, in bytes,
of the packet, and it uses this information to reduce the framng
overhead in the packet itself. A decoder inplenmentation MJST support
the fram ng described in this section. An alternative, self-
delimting variant of the framng is described in Appendi x B

Support for that variant is OPTI ONAL.

Al bit diagrams in this docunent number the bits so that bit 0 is
the nmost significant bit of the first byte, and bit 7 is the |east
significant. Bit 8 is thus the nost significant bit of the second
byte, etc. Well-fornmed Qpus packets obey certain requirenents,

mar ked [ Rl] through [ R7] below. These are summarized in Section 3.4
along with appropriate neans of handling mal forned packets.

3.1. The TOC Byte

A well -formed OQpus packet MJUST contain at |east one byte [R1]. This
byte fornms a tabl e-of-contents (TOC) header that signals which of the
various nodes and configurations a given packet uses. It is conposed
of a configuration nunber, "config", a stereo flag, "s", and a franme
count code, "c", arranged as illustrated in Figure 1. A description

of each of these fields foll ows.

Valin, et al. St andards Track [ Page 13]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0
01234567
R ok
| config |s| c
B i S S S

Figure 1: The TOC Byte

The top five bits of the TOC byte, |abeled "config", encode one of 32
possi bl e configurations of operating node, audi o bandw dth, and frane
size. As described, the LP (SILK) |ayer and MDCT (CELT) |ayer can be
conbined in three possible operating nodes:

1. A SILK-only node for use in low bitrate connections with an audio
bandwi dth of WB or |ess,

2. A Hybrid (SILK+CELT) node for SWB or FB speech at medi um
bitrates, and

3. A CELT-only node for very |ow del ay speech transni ssion as well
as nusic transmi ssion (NB to FB)

The 32 possible configurations each identify which one of these

operating nodes the packet uses, as well as the audi o bandw dth and
the frane size. Table 2 lists the paraneters for each configuration

Valin, et al. St andards Track [ Page 14]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Fom e e i aaa o S S e e e e +
| Configuration | Mode | Bandwi dth | Franme Sizes |
| Nunber (s) | | | |
o e e e e e e e e oo S S o m e e e e e e me o oo +
| 0...3 | SILK-only | NB | 10, 20, 40, 60 ms

| | | | |
| 4...7 | SILK-only | MB | 10, 20, 40, 60 ns |
| | | | |
| 8...11 | SILK-only | WB | 10, 20, 40, 60 ns

| | | | |
| 12...13 | Hybrid | SwB | 10, 20 ms |
| | | | |
| 14...15 | Hybrid | FB | 10, 20 ms |
| | | | |
| 16...19 | CELT-only | NB | 2.5, 5, 10, 20 ns

| | | | |
| 20...23 | CELT-only | WB | 2.5, 5, 10, 20 ms

| | | | |
| 24...27 | CELT-only | SWB | 2.5, 5, 10, 20 ns |
| | | | |
| 28...31 | CELT-only | FB | 2.5, 5, 10, 20 ns

o e e e e e e e e oo S S o m e e e e e e me o oo +

Tabl e 2: TOC Byte Configuration Paraneters

The configuration nunbers in each range (e.g., 0...3 for NB SILK-
only) correspond to the various choices of frane size, in the sane
order. For example, configuration O has a 10 ns franme size and
configuration 3 has a 60 ns frame size

One additional bit, labeled "s", signals nono vs. stereo, with 0
i ndi cating nono and 1 indicating stereo.

The remaining two bits of the TOCC byte, |abeled "c", code the nunber

of franes per packet (codes 0 to 3) as follows:

o 0: 1 frane in the packet

o 1: 2 frames in the packet, each with equal conpressed size
o 2: 2 frames in the packet, with different conpressed sizes
o 3: an arbitrary nunber of franes in the packet

This docunent refers to a packet as a code 0 packet, code 1 packet,
etc., based on the value of "

c .

Valin, et al. St andards Track [ Page 15]



RFC 6716 Interactive Audi o Codec Sept enber 2012

3.2. Frane Packing

This section describes how frames are packed according to each
possi bl e value of "c¢" in the TCC byte.

3.2.1. Frane Length Codi ng

Wien a packet contains multiple VBR frames (i.e., code 2 or 3), the
conpressed |l ength of one or nore of these frames is indicated with a
one- or two-byte sequence, with the neaning of the first byte as
fol | ows:

0 0: No frane (Discontinuous Transm ssion (DTX) or |ost packet)
o 1...251: Length of the frame in bytes

0 252...255: A second byte is needed. The total length is
(second_byte*4)+first_byte

The special length O indicates that no frame is avail able, either
because it was dropped during transm ssion by sone intermediary or
because the encoder chose not to transmit it. Any Qpus frane in any
nmode MAY have a |l ength of O.

The maxi mum representable length is 255*4+255=1275 bytes. For 20 ns
franes, this represents a bitrate of 510 kbit/s, which is

approxi mately the highest useful rate for lossily conpressed full band
stereo nmusic. Beyond this point, |ossless codecs are nore
appropriate. It is also roughly the maxi mumuseful rate of the NMDCT
| ayer as, shortly thereafter, quality no | onger inproves wth
additional bits due to limtations on the codebook sizes.

No length is transmitted for the last frame in a VBR packet, or for
any of the franes in a CBR packet, as it can be inferred fromthe
total size of the packet and the size of all other data in the
packet. However, the length of any individual frame MJST NOT exceed
1275 bytes [R2] to all ow for repacketization by gateways, conference
bridges, or other software.

3.2.2. Code 0: One Frane in the Packet
For code 0 packets, the TOC byte is inmrediately followed by N1 bytes

of conpressed data for a single frane (where Nis the size of the
packet), as illustrated in Figure 2.

Valin, et al. St andards Track [ Page 16]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0 1 2 3
01234567890123456789012345678901
T i i S i i S S e b s
| config |[s]|O]O] |
B i S S S |
| Conpressed frane 1 (N-1 bytes)... :
|

B e e i o e S e e i S S T e R i ik T TR o S S S e
Figure 2: A Code 0 Packet

3.2.3. Code 1: Two Franmes in the Packet, Each with Equal Conpressed
Si ze

For code 1 packets, the TOC byte is immediately foll owed by the
(N-1)/2 bytes of conpressed data for the first frame, foll owed by
(N-1)/2 bytes of conpressed data for the second frane, as illustrated
in Figure 3. The nunber of payl oad bytes avail able for conpressed
data, N1, MJST be even for all code 1 packets [R3].

0 1 2 3
01234567890123456789012345678901
B T S S e s e i s S i S S S S S S T S SR S S S i S S S

| config |s]|O]1]

B i ST NI :
| Conpressed frane 1 ((N-1)/2 bytes)...

: B o o i i i ik S S R SR
|+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-L l
| Conpressed frane 2 ((N-1)/2 bytes)...

: B i ST NI
| |

B s s i S S S o il S S S S
Figure 3: A Code 1 Packet

3.2.4. Code 2: Two Franmes in the Packet, with Different Conpressed
Si zes

For code 2 packets, the TOC byte is foll owed by a one- or two-byte
sequence indicating the length of the first frane (narked N1 in
Figure 4), followed by N1 bytes of conpressed data for the first
frane. The remaining N-N1-2 or N-N1-3 bytes are the conpressed data
for the second frame. This is illustrated in Figure 4. A code 2
packet MUST contain enough bytes to represent a valid length. For
exanple, a 1-byte code 2 packet is always invalid, and a 2-byte code
2 packet whose second byte is in the range 252...255 is also invalid.

Valin, et al. St andards Track [ Page 17]



RFC 6716 Interactive Audi o Codec Sept enber 2012

The length of the first frame, N1, MJIST also be no |arger than the
size of the payload renmaining after decoding that length for all code
2 packets [R4]. This nakes, for exanple, a 2-byte code 2 packet with
a second byte in the range 1...251 invalid as well (the only valid
2-byte code 2 packet is one where the length of both franes is zero).

0 1 2 3
01234567890123456789012345678901
i T o T e e e et o S s S R R SR
| config |s|1]0] Nl (1-2 bytes): |
B il i S S S S S T S S :
| Conpressed franme 1 (N1 bytes)...
: i T S e TR TR o E
| | |
e e i Sl T S R SR |
| Conpressed frane 2... :
: |
| |
e e i i e T S i S e e e R
Figure 4: A Code 2 Packet
3.2.5. Code 3: A Signaled Nunber of Franes in the Packet

Code 3 packets signal the nunber of frames, as well as additional
paddi ng, called "Opus padding" to indicate that this padding is added
at the Qpus layer rather than at the transport layer. Code 3 packets
MUST have at |east 2 bytes [R6,R7]. The TOC byte is followed by a
byte encodi ng the nunber of frames in the packet in bits 2 to 7
(marked "M in Figure 5), with bit 1 indicating whether or not Qpus
padding is inserted (marked "p" in Figure 5), and bit O indicating
VBR (marked "v" in Figure 5). M MJST NOT be zero, and the audio
duration contained within a packet MUST NOT exceed 120 ms [R5]. This
limts the maxi num frame count for any frame size to 48 (for 2.5 ns
franes), with lower limts for longer frame sizes. Figure 5
illustrates the layout of the franme count byte.

0
01234567
B
| v| pl M |
B e S S T

Figure 5: The franme count byte
When Opus padding is used, the number of bytes of padding is encoded

in the bytes following the frame count byte. Values fromO...254
indicate that 0...254 bytes of padding are included, in addition to

Valin, et al. St andards Track [ Page 18]



RFC 6716 Interactive Audi o Codec Sept enber 2012

the byte(s) used to indicate the size of the padding. |If the value
is 255, then the size of the additional padding is 254 bytes, plus

t he paddi ng val ue encoded in the next byte. There MJST be at | east
one nore byte in the packet in this case [R6,R7]. The additiona
paddi ng bytes appear at the end of the packet and MJST be set to zero
by the encoder to avoid creating a covert channel. The decoder MJST
accept any value for the paddi ng bytes, however.

Al t hough this encoding provides nmultiple ways to indicate a given
nunber of paddi ng bytes, each uses a different nunber of bytes to

i ndi cate the padding size and thus will increase the total packet
size by a different anount. For exanple, to add 255 bytes to a
packet, set the padding bit, p, to 1, insert a single byte after the
franme count byte with a value of 254, and append 254 paddi ng bytes
with the value zero to the end of the packet. To add 256 bytes to a
packet, set the padding bit to 1, insert two bytes after the frame
count byte with the values 255 and 0, respectively, and append 254
paddi ng bytes with the value zero to the end of the packet. By using
the value 255 nultiple times, it is possible to create a packet of
any specific, desired size. Let P be the nunber of header bytes used
to indicate the padding size plus the nunber of paddi ng bytes
thenselves (i.e., Pis the total nunber of bytes added to the
packet). Then, P MJST be no nore than N-2 [R6, R7].

In the CBR case, let R=N-2-P be the nunber of bytes remaining in the
packet after subtracting the (optional) padding. Then, the
conpressed length of each frame in bytes is equal to RFM The val ue
R MUST be a non-negative integer nmultiple of M[R6]. The conpressed
data for all Mframes follows, each of size RRMbytes, as illustrated
in Figure 6.

Valin, et al. St andards Track [ Page 19]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0 1 2 3
01234567890123456789012345678901

i T o T e e e et o S s S R R SR
| config |s]|1]1]0|p| M | Padding Iength (Optional)
B T e o i S I i i S S N iy St S I S S

! Conmpressed frane 1 (R M bytes). .. l
|-|--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|-|-
! Compressed frane 2 (R'Mbytes). .. l
|-|--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|-|-

B T e o i S I i i S S N iy St S I S S
: Conpressed frane M (R M bytes). .. :
T i T i S i S S S

Qpus Paddi ng (Optional). |
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S

Fi gure 6: A CBR Code 3 Packet

In the VBR case, the (optional) padding length is followed by M1
frane lengths (indicated by "N1" to "NfM1]" in Figure 7), each
encoded in a one- or two-byte sequence as described above. The
packet MUST contain enough data for the M1 lengths after renoving
the (optional) padding, and the sum of these | engths MJUST be no

| arger than the nunber of bytes remaining in the packet after
decoding them [R7]. The conpressed data for all Mfranes follows,
each frame consisting of the indicated nunber of bytes, with the
final frame consum ng any remaining bytes before the final padding,
as illustrated in Figure 6. The nunber of header bytes (TCC byte,
frame count byte, padding length bytes, and frane | ength bytes), plus
the signaled length of the first M1 frames thenselves, plus the
signal ed I ength of the padding MJUST be no larger than N, the total
size of the packet.

Valin, et al. St andards Track [ Page 20]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0 1 2 3
01234567890123456789012345678901

i T o T e e e et o S s S R R SR
| config |s]|1]1]1|p] M | Padding length (Optional) :
B i S B T i S S S &

+- -+

N1 (1-2 bytes): N2 (1-2 bytes): : N M 1] |
B s S S i i i ks a ks st S S S S S S
| |
: Conpressed frane 1 (N1 bytes)... :
| |
B T e o i S I i i S S N iy St S I S S
| |
: Conmpressed frane 2 (N2 bytes)... :
| |
R R R R e e s o S e R S S S S S S e e e e e
| |
| |
B s S S i i i ks a ks st S S S S S S
| |
: Conmpressed frane M. . :
| |
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S

Qpus Paddi ng (Optional). |
+++++++++++++++++++++++++++++++++

Figure 7: A VBR Code 3 Packet
3.3. Exanples
Si mpl est case, one NB nono 20 ns SILK frane:
0 1 2 3

01234567890123456789012345678901
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S
| 1 | 0] O] O] conpr essed data. .

+++++++++++++++++++++++++++++++++

Fi gure 8

Valin, et al. St andards Track [ Page 21]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Two FB nono 5 ns CELT frames of the same conpressed size

0 1 2 3
01234567890123456789012345678901
i S iy T S e il aity SR I S S S

| 29 | 0] O] 1] conpr essed data. .
+++++++++++++++++++++++++++++++++

Figure 9
Two FB nmono 20 ns Hybrid frames of different conpressed size:

0 1 2 3

01234567890123456789012345678901

B e e e e S e S T S S sl S S S S T i i sl st S

| 15 | 0] 1] 1] 1] O] 2 | N1 | |

BT R i i o i e e sl st ST S SRR R |

| conpr essed data. .

e I S e it i S S S e e S S T i N + R I e i Sl LRI S +
Fi gure 10

Four FB stereo 20 ns CELT franmes of the sanme conpressed size

0 1 2 3
01234567890123456789012345678901

i T o T e e e et o S s S R R SR
| 31 | 1] 1] 1] 0] 0| 4 | conpressed dat a. .
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S

Figure 11

3.4. Receiving Ml forned Packets
A receiver MJST NOT process packets that violate any of the rules
above as nornal Qpus packets. They are reserved for future
applications, such as in-band headers (containing netadata, etc.).
Packets that violate these constraints may cause inplenmentations of
_this_ specification to treat themas mal forned and di scard them
These constraints are sunmari zed here for reference:
[R1] Packets are at |east one byte.
[R2] No inplicit frame length is larger than 1275 bytes.

[R3] Code 1 packets have an odd total length, N, so that (N-1)/2 is
an integer.

Valin, et al. St andards Track [ Page 22]



RFC 6716 Interactive Audi o Codec Sept enber 2012

[R4] Code 2 packets have enough bytes after the TOC for a valid
frame length, and that length is no larger than the nunber of
bytes remaining in the packet.

[R5] Code 3 packets contain at |east one frame, but no nore than
120 nms of audio total.

[R6] The length of a CBR code 3 packet, N, is at |least two bytes,
t he nunber of bytes added to indicate the padding size plus the
trailing padding bytes thenselves, P, is no nore than N-2, and
the frame count, M satisfies the constraint that (N2-P) is a
non- negative integer nultiple of M

[R7] VBR code 3 packets are large enough to contain all the header
bytes (TOC byte, frane count byte, any padding | ength bytes,
and any frame length bytes), plus the length of the first M1
franmes, plus any trailing padding bytes.

4. Qpus Decoder

The Qpus decoder consists of two main blocks: the SILK decoder and
the CELT decoder. At any given tine, one or both of the SILK and
CELT decoders may be active. The output of the Cpus decode is the
sum of the outputs fromthe SILK and CELT decoders with proper sanple
rate conversion and del ay conpensation on the SILK side, and optiona
deci mati on (when decoding to sanple rates |less than 48 kHz) on the

CELT side, as illustrated in the bl ock di agram bel ow
Fomm e e o + B S +
| SILK | | Sanpl e
+->| Decoder |--->| Rat e [----+
Bit- e + [ | | Conversion | %
stream | Range |---+ +--------- + R R + /---\" Audio
——————— >| Decoder | | +]------>
| [---+ +--------- + e + \---/
R + | | CELT | | Decimation | n
+->| Decoder |--->| (Optional) |----+
AR L .

4.1. Range Decoder

Qpus uses an entropy coder based on range codi ng [ RANGE- CODI NG

[ MARTI N79], which is itself a rediscovery of the FIFO arithnetic code
i ntroduced by [CODING THESIS]. It is very simlar to arithnetic
encodi ng, except that encoding is done with digits in any base

Valin, et al. St andards Track [ Page 23]



RFC 6716 Interactive Audi o Codec Sept enber 2012

instead of with bits, so it is faster when using |arger bases (i.e
a byte). Al of the calculations in the range coder nust use bit-
exact integer arithnetic.

Synmbol s may al so be coded as "raw bits" packed directly into the

bi t stream bypassing the range coder. These are packed backwards
starting at the end of the frane, as illustrated in Figure 12. This
reduces conplexity and nakes the streamnore resilient to bit errors,
as corruption in the raw bits will not desynchronize the decoding
process, unlike corruption in the input to the range decoder. Raw
bits are only used in the CELT | ayer

0 1 2 3

01234567890123456789012345678901
i T o T e e e et o S s S R R SR
| Range coder data (packed MSB to LSB) ->
+

+
+ e i T S e O S S T S e O S o Tk S NI +
<- Boundary occurs at an arbitrary bit position

-+ +-+ +
<- Raw bits data (packed LSB to MSB)
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S

Legend:

LSB
V5B

Least Significant Bit
Most Significant Bit

Figure 12: Illustrative Exanple of Packing Range Coder
and Raw Bits Data

Each synmbol coded by the range coder is drawn froma finite al phabet
and coded in a separate "context", which describes the size of the
al phabet and the rel ative frequency of each synbol in that al phabet.

Suppose there is a context with n synbols, identified with an index
that ranges fromO to n-1. The paraneters needed to encode or decode
synmbol k in this context are represented by a three-tuple

(fITk], fh[k], ft), all 16-bit unsigned integers, wth

0 <= fl[k] < fh[k] <= ft <= 65535. The values of this tuple are
derived fromthe probability nodel for the synbol, represented by

tradi tional "frequency counts". Because Qpus uses static contexts,
those are not updated as synbols are decoded. Let f[i] be the
frequency of synbol i. Then, the three-tuple corresponding to synbo

k is given by the foll ow ng:

Valin, et al. St andards Track [ Page 24]



RFC 6716 Interactive Audi o Codec Sept enber 2012

k-1 n-1

fl[k] =\ f[i], fh[k] =fl[k] + f[k], ft =\ f[i]
/ /
i i

0 0

The range decoder extracts the synbols and integers encoded using the
range encoder in Section 5.1. The range decoder nmintains an
internal state vector conposed of the two-tuple (val, rng), where va
represents the difference between the high end of the current range
and the actual coded value, mnus one, and rng represents the size of
the current range. Both val and rng are 32-bit unsigned integer

val ues.

4.1.1. Range Decoder Initialization

Let bO be an 8-bit unsigned integer containing first input byte (or
containing zero if there are no bytes in this Qous frame). The
decoder initializes rng to 128 and initializes val to (127 -
(b0>>1)), where (b0>>1) is the top 7 bits of the first input byte.
It saves the remaining bit, (b0&1), for use in the renornalization
procedure described in Section 4.1.2.1, which the decoder invokes
imediately after initialization to read additional bits and
establish the invariant that rng > 2**23.

4.1.2. Decodi ng Synbol s

Decoding a synbol is a two-step process. The first step determ nes a
16-bit unsigned value fs, which lies within the range of sone synbo
in the current context. The second step updates the range decoder
state with the three-tuple (fl[k], fh[k], ft) corresponding to that
synbol .

The first step is inplenmented by ec_decode() (entdec.c), which
conput es

The divisions here are integer division

The decoder then identifies the synmbol in the current context
corresponding to fs; i.e., the value of k whose three-tuple

(fITKk], fh[k], ft) satisfies flI[k] <=fs < fh[k]. It uses this tuple
to update val according to

Valin, et al. St andards Track [ Page 25]



RFC 6716 Interactive Audi o Codec Sept enber 2012

rng
val =val - --- * (ft - fh[k])
ft

If fI[k] is greater than zero, then the decoder updates rng using

rng
rng = --- * (fh[k] - fI[k])
ft

O herwi se, it updates rng using

rng
rng =rng - --- * (ft - fh[k])
ft

Using a special case for the first synbol (rather than the |ast
synbol, as is comonly done in other arithnmetic coders) ensures that
all the truncation error fromthe finite precision arithnetic

accurmul ates in symbol 0. This makes the cost of coding a O slightly
smal l er, on average, than its estinmated probability indicates and
makes the cost of coding any other symbol slightly larger. Wen
contexts are designed so that O is the nost probable synbol, which is
often the case, this strategy ninimzes the inefficiency introduced
by the finite precision. It also nmakes sonme of the special-case
decoding routines in Section 4.1.3 particularly sinple.

After the updates, inplenented by ec_dec_update() (entdec.c), the
decoder normalizes the range using the procedure in the next section
and returns the index k.

4.1.2.1. Renornumlization

To nornmalize the range, the decoder repeats the foll owi ng process,

i npl emented by ec_dec_nornalize() (entdec.c), until rng > 2**23. |f
rng is already greater than 2**23, the entire process is skipped.
First, it sets rng to (rng<<8). Then, it reads the next byte of the
Qous franme and fornms an 8-bit value sym using the |eftover bit
buffered fromthe previous byte as the high bit and the top 7 bits of
the byte just read as the other 7 bits of sym The remaining bit in
the byte just read is buffered for use in the next iteration. |If no
nore input bytes renmin, it uses zero bits instead. See

Section 4.1.1 for the initialization used to process the first byte.
Then, it sets

val = ((val <<8) + (255-sym)) & Ox7FFFFFFF

Valin, et al. St andards Track [ Page 26]



RFC 6716 Interactive Audi o Codec Sept enber 2012

It is normal and expected that the range decoder will read severa
bytes into the data of the raw bits (if any) at the end of the frame
by the time the frame is conpletely decoded, as illustrated in

Figure 13. This same data MJST al so be returned as raw bits when
requested. The encoder is expected to term nate the streamin such a
way that the range decoder will decode the intended val ues regardl ess
of the data contained in the raw bits. Section 5.1.5 describes a
procedure for doing this. |f the range decoder consunes all of the
bytes belonging to the current frame, it MJST continue to use zero
when any further input bytes are required, even if there is
additional data in the current packet from padding or other franes.

n n+1 n+2 n+3
012345670123456701234567012345617
i T o T e e e et o S s S R R SR

: | <----------- Overlap region ------------ >

e S i a  Tn S i S S
N N

| End of data buffered by the range coder

Figure 13: Illustrative Exanple of Raw Bits Overl appi ng
Range Coder Data

4.1.3. Alternate Decodi ng Mt hods

The reference inplenentati on uses three additional decodi ng nethods
that are exactly equivalent to the above but nake assunptions and
sinplifications that allow for a nore efficient inplenmentation

4.1.3.1. ec_decode_bin()

The first is ec_decode_bin() (entdec.c), defined using the paraneter
ftb instead of ft. It is mathematically equivalent to calling
ec_decode() with ft = (1<<ftb), but it avoids one of the divisions.

4.1.3.2. ec_dec_bit_logp()

The next is ec_dec_bit _ logp() (entdec.c), which decodes a single

bi nary synbol, replacing both the ec_decode() and ec_dec_update()
steps. The context is described by a single paraneter, |ogp, which
is the absolute value of the base-2 logarithm of the probability of a
"1". It is mathematically equivalent to calling ec_decode() with

ft = (1<<logp), followed by ec_dec_update() with the 3-tuple

(fITk] =0, fh[k] = (1<<logp) - 1, ft = (1l<<logp)) if the returned

Valin, et al. St andards Track [ Page 27]



RFC 6716 Interactive Audi o Codec Sept enber 2012

value of fs is less than (1<<logp) - 1 (a "0" was decoded), and with
(fI[k] = (1<<logp) - 1, fh[Kk] = ft = (1<<logp)) otherwi se (a "1" was
decoded). The inplenentation requires no rmultiplications or

di vi si ons.

4.1.3.3. ec_dec_icdf()

The last is ec_dec_icdf() (entdec.c), which decodes a single synbol
with a tabl e-based context of up to 8 bits, also replacing both the
ec_decode() and ec_dec_update() steps, as well as the search for the
decoded synbol in between. The context is described by two
paraneters, an icdf ("inverse" cunulative distribution function)
table and fth. As with ec_decode bin(), (1<<ftb) is equivalent to
ft. idcf[k], on the other hand, stores (1l<<ftb)-fh[k], which is equa
to (1<<ftb) - fI[k+1]. fI[0O] is assunmed to be 0, and the table is
term nated by a value of 0 (where fh[k] == ft).

The function is mathematically equivalent to calling ec_decode() with
ft = (1<<ftb), using the returned value fs to search the table for
the first entry where fs < (1<<ftb)-icdf[k], and calling
ec_dec_update() with fI[k] = (1<<ftb) - icdf[k-1] (or O if k == 0),
fh[k] = (1<<ftb) - idcf[k], and ft = (1<<ftb). Conbining the search
with the update allows the division to be replaced by a series of

mul tiplications (which are usually rmuch cheaper), and using an
inverse CDF allows the use of an ftb as large as 8 in an 8-bit table
wi t hout any special cases. This is the primary interface with the
range decoder in the SILK layer, though it is used in a few places in
the CELT | ayer as well.

Al though icdf[k] is nore convenient for the code, the frequency
counts, f[k], are a nore natural representation of the probability
distribution function (PDF) for a given synbol. Therefore, this
docunment lists the latter, not the forner, when describing the
context in which a synbol is coded as a list, e.qg., {4, 4, 4, 4}/16
for a uniformcontext with four possible values and ft = 16. The
value of ft after the slash is always the sumof the entries in the
PDF, but is included for convenience. Contexts with identica
probabilities, f[k]/ft, but different values of ft (or equivalently,
ftb) are not the sane, and cannot, in general, be used in place of
one another. An icdf table is also not capable of representing a PDF
where the first synbol has O probability. |In such contexts,
ec_dec_icdf() can decode the synbol by using a table that drops the
entries for any initial zero-probability values and by addi ng the
constant offset of the first value with a non-zero probability to its
return val ue.

Valin, et al. St andards Track [ Page 28]



RFC 6716 Interactive Audi o Codec Sept enber 2012

4.1.4. Decoding Raw Bits

The raw bits used by the CELT | ayer are packed at the end of the
frane, with the |least significant bit of the first value packed in
the | east significant bit of the last byte, filling up to the nost
significant bit in the last byte, continuing on to the |east
significant bit of the penultinate byte, and so on. The reference

i mpl enentati on reads them using ec_dec_bits() (entdec.c). Because

t he range decoder nust read several bytes ahead in the stream as
described in Section 4.1.2.1, the input consuned by the raw bits may
overlap with the input consuned by the range coder, and a decoder
MUST allow this. The format should render it inpossible to attenpt
to read nore raw bits than there are actual bits in the frane, though
a decoder may wish to check for this and report an error.

4.1.5. Decoding Uniformy Distributed Integers

The function ec_dec_uint() (entdec.c) decodes one of ft equiprobable
values in the range 0 to (ft - 1), inclusive, each with a frequency
of 1, where ft may be as large as (2**32 - 1). Because ec_decode()
islimted to a total frequency of (2**16 - 1), it splits up the

val ue into a range coded synbol representing up to 8 of the high
bits, and, if necessary, raw bits representing the remai nder of the
value. The linmt of 8 bits in the range coded synbol is a trade-off
bet ween i npl enentati on conplexity, nodeling error (since the synbols
no longer truly have equal coding cost), and rounding error

i ntroduced by the range coder itself (which gets larger as nore bits
are included). Using raw bits reduces the nmaxi mum nunber of
divisions required in the worst case, but nmeans that it may be

possi ble to decode a val ue outside the range 0 to (ft - 1),

i ncl usive.

ec_dec_uint() takes a single, positive paraneter, ft, which is not
necessarily a power of two, and returns an integer, t, whose val ue

lies between 0 and (ft - 1), inclusive. Let ftb =ilog(ft - 1),
i.e., the nunber of bits required to store (ft - 1) in two's
conpl enent notation. |If ftbis 8 or less, thent is decoded with

t = ec_decode(ft), and the range coder state is updated using the
three-tuple (t, t + 1, ft).

If ftb is greater than 8, then the top 8 bits of t are decoded using
t = ec_decode(((ft - 1) >> (fthb - 8)) + 1)
the decoder state is updated using the three-tuple (t, t + 1, ((ft -

1) >> (ftb - 8)) + 1), and the remaining bits are decoded as raw
bits, setting

Valin, et al. St andards Track [ Page 29]



RFC 6716 Interactive Audi o Codec Sept enber 2012

t = (t << (ftb - 8)) | ec_dec_bits(ftb - 8)

If, at this point, t >= ft, then the current frame is corrupt. In
that case, the decoder should assune there has been an error in the
codi ng, decoding, or transm ssion and SHOULD take nmeasures to concea
the error (e.g., saturate to ft-1 or use the Packet Loss Conceal nent
(PLC)) and/or report to the application that the error has occurred.

4.1.6. Current Bit Usage

The bit allocation routines in the CELT decoder need a conservative
upper bound on the nunber of bits that have been used fromthe
current frame thus far, including both range coder bits and raw bits.
This drives allocation decisions that nmust match those nmade in the
encoder. The upper bound is conputed in the reference inplenmentation
to whole-bit precision by the function ec_tell() (entcode.h) and to
fractional 1/8th bit precision by the function ec_tell _frac()
(entcode.c). Like all operations in the range coder, it nust be

i mpl enented in a bit-exact nmanner, and it nust produce exactly the
same val ue returned by the sane functions in the encoder after
encodi ng the sane synbol s.

ec_tell() is guaranteed to return ceil(ec_tell _frac()/8.0). In
various places, the codec will check to ensure there is enough room
to contain a synbol before attenpting to decode it. |In practice

al t hough the nunber of bits used so far is an upper bound, decoding a
synbol whose probability nodel suggests it has a worst-case cost of p
1/8th bits may actually advance the return value of ec_tell _frac() by
p-1, p, or p+1l 1/8th bits, due to approximation error in that upper
bound, truncation error in the range coder, and for |arge val ues of
ft, nmodeling error in ec_dec_uint().

However, this error is bounded, and periodic calls to ec_tell () or
ec_tell _frac() at precisely defined points in the decodi ng process
prevent it from accunulating. For a range coder synbol that requires
a whol e nunber of bits (i.e., for which ft/(fh[k] - fl[k]) is a power
of two), where there are at least p 1/8th bits avail able, decoding
the synbol will never cause ec _tell() or ec_tell frac() to exceed the
size of the frame ("bust the budget"). |In this case, the return

val ue of ec_tell _frac() will only advance by nore than p 1/8th bits
if there were an additional, fractional nunmber of bits remining, and
it will never advance beyond the next whol e-bit boundary, which is
safe, since frames always contain a whole nunber of bits. However,
when p is not a whole nunmber of bits, an extra 1/8th bit is required
to ensure that decoding the synbol will not bust the budget.

Valin, et al. St andards Track [ Page 30]



RFC 6716 Interactive Audi o Codec Sept enber 2012

The reference inplenentation keeps track of the total nunber of whole
bits that have been processed by the decoder so far in the variable
nbits_total, including the (possibly fractional) nunber of bits that
are currently buffered, but not consunmed, inside the range coder.
nbits total is initialized to 9 just before the initial range
renornal i zati on process conpletes (or equivalently, it can be
initialized to 33 after the first renornalization). The extra two
bits over the actual amount buffered by the range coder guarantees
that it is an upper bound and that there is enough room for the
encoder to termnate the stream Each iteration through the range
coder’s renormalization |loop increases nbits total by 8  Reading raw
bits increases nbits total by the nunber of raw bits read.

4.1.6.1. ec_tell()
The whol e nunber of bits buffered in rng may be estimated via
lg =ilog(rng). ec_tell() then becones a sinple matter of renoving
these bits fromthe total. It returns (nbits total - 1g).
In anewWy initialized decoder, before any synmbols have been read,

this reports that 1 bit has been used. This is the bit reserved for
term nation of the encoder.

4.1.6.2. ec_tell _frac()
ec_tell _frac() estimtes the nunber of bits buffered in rng to
fractional precision. Since rng nust be greater than 2**23 after
renormal i zation, | g nust be at |east 24. Let
r QL5 = rng >> (1 g-16)
so that 32768 <= r_Ql5 < 65536, an unsigned QL5 val ue representing

the fractional part of rng. Then, the follow ng procedure can be
used to add one bit of precision to lg. First, update

r Q15 = (r_QI5*r_Q15) >> 15
Then, add the 16th bit of r_QL5 to Ig via
lg = 2*Ig + (r_Ql5 >> 16)
Finally, if this bit was a 1, reduce r_Ql5 by a factor of two via
r Q5 = r_Q15 >> 1
so that it once again lies in the range 32768 <= r_Ql5 < 65536. This

procedure is repeated three tines to extend Ig to 1/8th bit
precision. ec_tell _frac() then returns (nbits total*8 - 1Q).

Valin, et al. St andards Track [ Page 31]



RFC 6716 Interactive Audi o Codec Sept enber 2012

4.2. Sl|LK Decoder

The decoder’s LP layer uses a nodified version of the SILK codec
(herein sinply called "SILK"), which runs a decoded excitation signa
t hrough adaptive | ong-term and short-term prediction synthesis

filters. It runs at NB, MB, and WB sanple rates internally. Wen
used in a SWB or FB Hybrid frame, the LP layer itself still only runs
in VB

4.2.1. SILK Decoder Modul es

An overvi ew of the decoder is given in Figure 14.

T + I +
-->| Range |--->| Decode R R L +
1| Decoder | 2 | Paraneters |---------- + 5 |
[ S — + o m e e oo - - + 4 | |
3 | | |
\/ \/ \/
I + meemeeaeaaan + meemeeaeaaan +
| Generate |-->] LTP |-->] LPC
| Excitation | | Synthesis | | Synthesis
S + S + S +
" |
| |
T IRy S +
| 6
| B SR + B TS +
+-->| Stereo |-->] Sanple Rate |-->
| Unm xing | 7| Conversion | 8
. + Aemeeiiaaaoan +

Range encoded bitstream

Coded paraneters

Pul ses, LSBs, and signs

Pitch | ags, Long-Term Prediction (LTP) coefficients
Li near Predictive Coding (LPC) coefficients and gains
Decoded signal (nono or nid-side stereo)

Unmi xed signal (nono or left-right stereo)

Resanpl ed si gna

NoORWLNE

Fi gure 14: S| LK Decoder

Valin, et al. St andards Track [ Page 32]



RFC 6716 Interactive Audi o Codec Sept enber 2012

The decoder feeds the bitstream (1) to the range decoder from
Section 4.1 and then decodes the paraneters in it (2) using the
procedures detailed in Sections 4.2.3 through 4.2.7.8.5. These
paraneters (3, 4, 5) are used to generate an excitation signal (see
Section 4.2.7.8.6), which is fed to an optional Long-Term Prediction
(LTP) filter (voiced franes only, see Section 4.2.7.9.1) and then a
short-termprediction filter (see Section 4.2.7.9.2), producing the
decoded signal (6). For stereo streans, the md-side representation
is converted to separate left and right channels (7). The result is
finally resampled to the desired output sanple rate (e.g., 48 kHz) so
that the resanpled signal (8) can be m xed with the CELT | ayer

4.2.2. LP Layer Organi zation

Internally, the LP layer of a single Qous franme is conposed of either
a single 10 ns regular SILK frame or between one and three 20 ns
regular SILK frames. A stereo Qpus frame may doubl e the nunber of
regular SILK frames (up to a total of six), since it includes
separate franes for a md channel and, optionally, a side channel
Optional Low Bit-Rate Redundancy (LBRR) franes, which are reduced-
bitrate encodi ngs of previous SILK franes, may be included to aid in
recovery from packet loss. |If present, these appear before the
regul ar SILK frames. They are, in nost respects, identical to

regul ar, active SILK franmes, except that they are usually encoded
with a lower bitrate. This docunment uses "SILK frame" to refer to
either one and "regular SILK frane" if it needs to draw a distinction
bet ween t he two.

Logically, each SILK frame is, in turn, conposed of either two or
four 5 ns subfranes. Various paraneters, such as the quantization
gain of the excitation and the pitch lag and filter coefficients can
vary on a subfrane-by-subfranme basis. Physically, the parameters for
each subframe are interleaved in the bitstream as described in the
rel evant sections for each paraneter.

Al'l of these franes and subframes are decoded fromthe sanme range
coder, with no paddi ng between them Thus, packing nmultiple SILK
frames in a single Qpus franme saves, on average, half a byte per SILK
frane. It also allows sonme paraneters to be predicted fromprior
SILK frames in the same Opus frane, since this does not degrade
packet | oss robustness (beyond any penalty for merely using fewer,

| arger packets to store nultiple franes).

Stereo support in SILK uses a variant of md-side coding, allowi ng a

nmono decoder to sinply decode the mid channel. However, the data for
the two channels is interleaved, so a nono decoder nust still unpack

Valin, et al. St andards Track [ Page 33]



RFC 6716 Interactive Audi o Codec Sept enber 2012

the data for the side channel. It would be required to do so anyway
for Hybrid Opus franes or to support decoding individual 20 ns
franes.

Tabl e 3 summari zes the overall grouping of the contents of the LP
layer. Figures 15 and 16 illustrate the ordering of the various SILK
franes for a 60 ns Qpus franme, for both nono and stereo,

respectively.

e T T +
| Synbol (s) | PDF( s) | Condi ti on
e S S +
Voi ce Activity Detection (VAD) {1, 1}/2
Fl ags
LBRR Fl ag {1, 1}/2

Per - Frame LBRR Fl ags Tabl e 4 Section 4.2. 4

LBRR Frane(s) Section 4.2.4

Regul ar SI LK Frane(s)

o m e e e e e e e e e e e e e e eaao - +
| VAD Fl ags |
o e e e e e e e e e e e e e e oo +
| LBRR Fl ag |
oo e e e e e e e eee e +
| Per-Frame LBRR Flags (Optional)

o m e e e e e e e e e e e e e e eaao - +
| LBRR Franme 1 (Optional) |
o e e e e e e e e e e e e e e oo +
| LBRR Frane 2 (Optional) |
oo e e e e e e e eee e +
| LBRR Frane 3 (Optional)

o m e e e e e e e e e e e e e e eaao - +
| Regul ar SI LK Frame 1 |
o e e e e e e e e e e e e e e oo +
| Regul ar SI LK Frane 2 |
oo e e e e e e e eee e +
| Regul ar SI LK Franme 3 |
o m e e e e e e e e e e e e e e eaao - +

Figure 15: A 60 ns Mono Franme

Valin, et al. St andards Track [ Page 34]



RFC 6716 Interactive Audi o Codec Sept enber 2012

. +
| M d VAD Fl ags |
T v +
| M d LBRR Fl ag |
o e m e e e e e e e e e e e e e e e +
| Si de VAD Fl ags
. +
| Si de LBRR Fl ag

T e +
| Md Per-Frame LBRR Fl ags (Optional)

o e m e e e e e e e e e e e e e e e +
| Side Per-Frame LBRR Flags (Optional)
e +
| Md LBRR Frane 1 (Optional) |
T e +
| Side LBRR Frane 1 (Optional) |
o e m e e e e e e e e e e e e e e e +
| Md LBRR Frane 2 (Optional) |
. +
| Side LBRR Frame 2 (Optional) |
T e +
| Md LBRR Frane 3 (Optional) |
o e m e e e e e e e e e e e e e e e +
| Side LBRR Frane 3 (Optional) |
. +
| Md Regular SILK Frane 1 |
e +
| Side Regular SILK Frane 1 (Optional)

o e m e e e e e e e e e e e e e e e +
| M d Regul ar SILK Frane 2 |
. +
| Side Regular SILK Frame 2 (Optional)
T e +
| M d Regul ar SILK Frane 3 |
o e m e e e e e e e e e e e e e e e +
| Side Regular SILK Frame 3 (Optional)
. +

Figure 16: A 60 ns Stereo Frane
4.2.3. Header Bits

The LP layer begins with two to ei ght header bits, decoded in

sil k_Decode() (dec_APl.c). These consist of one Voice Activity
Detection (VAD) bit per frame (up to 3), followed by a single flag

i ndi cating the presence of LBRR frames. For a stereo packet, these
first flags correspond to the md channel, and a second set of flags
is included for the side channel

Valin, et al. St andards Track [ Page 35]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Because these are the first synbols decoded by the range coder and
because they are coded as binary values with uniform probability,
they can be extracted directly fromthe nost significant bits of the
first byte of conpressed data. Thus, a receiver can determine if an
Qpus franme contains any active SILK frames wi thout the overhead of
usi ng the range decoder.

4.2.4. Per-Frane LBRR Fl ags

For Qpus franmes longer than 20 ns, a set of LBRR flags is decoded for
each channel that has its LBRR flag set. Each set contains one flag
per 20 ns SILK frane. 40 ns Opus franes use the 2-frane LBRR flag PDF
fromTable 4, and 60 ns Qpus franes use the 3-frane LBRR flag PDF

For each channel, the resulting 2- or 3-bit integer contains the
correspondi ng LBRR flag for each frame, packed in order fromthe LSB
to the MSB.

B S o e e m e e e e e e e e e e e e e e e e o - +
| Frane Size | PDF

R oo e e e e e e e e e e e aaa +
| 40 ns | {0, 53, 53, 150}/256

| | |
| 60 ns | {0, 41, 20, 29, 41, 15, 28, 82}/256

B S o e e m e e e e e e e e e e e e e e e e o - +

Tabl e 4: LBRR Fl ag PDFs

A 10 or 20 ns Opus frame does not contain any per-frane LBRR fl ags,
as there may be at nost one LBRR frame per channel. The gl obal LBRR
flag in the header bits (see Section 4.2.3) is already sufficient to
i ndi cate the presence of that single LBRR frane.

4.2.5. LBRR Franes

The LBRR frames, if present, contain an encoded representation of the
signal immediately prior to the current Qous frane as if it were
encoded with the current node, frane size, audio bandw dth, and
channel count, even if those differ fromthe prior OQpus frame. Wen
one of these paraneters changes fromone Qpus frame to the next, this
inplies that the LBRR franes of the current Cpus franme may not be
sinmple drop-in replacenents for the contents of the previous Qpus
frame.

For exanple, when switching from20 ns to 60 ns, the 60 ns Qpus frane
may contain LBRR franes covering up to three prior 20 ns Cpus franes
even if those franes already contai ned LBRR franmes covering some of
the sane tine periods. Wen switching from20 ns to 10 nms, the 10 ns
Qpus frane can contain an LBRR frane covering at nost half the prior

Valin, et al. St andards Track [ Page 36]



RFC 6716 Interactive Audi o Codec Sept enber 2012

20 ms Qpus frane, potentially |eaving a hole that needs to be
conceal ed fromeven a single packet |oss (see Section 4.4). Wen
switching fromnono to stereo, the LBRR frames in the first stereo
Qpus frame MAY contain a non-trivial side channel

In order to properly produce LBRR frames under all conditions, an
encoder might need to buffer up to 60 ns of audio and re-encode it
during these transitions. However, the reference inplenentation opts
to disable LBRR franmes at the transition point for sinplicity. Since
transitions are relatively infrequent in normal usage, this does not
have a significant inpact on packet |oss robustness.

The LBRR franmes imediately follow the LBRR flags, prior to any
regul ar SILK franmes. Section 4.2.7 describes their exact contents.
LBRR franes do not include their own separate VAD flags. LBRR franes
are only neant to be transnmitted for active speech, thus all LBRR
franes are treated as active

In a stereo Qpus frame |onger than 20 s, although the per-frane LBRR
flags for the md channel are coded as a unit before the per-frane
LBRR flags for the side channel, the LBRR franmes thenselves are

interl eaved. The decoder parses an LBRR frane for the m d channel of
a given 20 ms interval (if present) and then inmedi ately parses the
corresponding LBRR frane for the side channel (if present), before
proceeding to the next 20 ns interval

4.2.6. Regular SILK Franes
The regular SILK frame(s) follow the LBRR franes (if any).
Section 4.2.7 describes their contents, as well. Unlike the LBRR
franes, a regular SILK frame is coded for each tine interval in an
Qous frame, even if the corresponding VAD flags are unset. For
stereo Qpus frames |longer than 20 ns, the regular mid and side SILK
franes for each 20 ns interval are interleaved, just as with the LBRR
franes. The side frane may be skipped by coding an appropriate flag,
as detailed in Section 4.2.7.2.

4.2.7. SILK Frane Contents
Each SILK frane includes a set of side information that encodes
o0 The frame type and quantization type (Section 4.2.7.3),
0 Quantization gains (Section 4.2.7.4),

o0 Short-termprediction filter coefficients (Section 4.2.7.5),

Valin, et al. St andards Track [ Page 37]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0 A Line Spectral Frequencies (LSFs) interpolation weight
(Section 4.2.7.5.5),

o LTP filter lags and gains (Section 4.2.7.6), and
0 A Linear Congruential Generator (LCG seed (Section 4.2.7.7).

The quanti zed excitation signal (see Section 4.2.7.8) follows these
at the end of the frame. Table 5 details the overall organization of
a SlILK frane.

Valin, et al. St andards Track [ Page 38]



RFC 6716 Interactive Audi o Codec Sept enber 2012

e S S +

| Synbol (s) | PDF( s) | Condi tion |

T T N T T N T T +
Stereo Prediction Wights Table 6 Section 4.2.7.1
M d-only Fl ag Tabl e 8 Section 4.2.7.2

Frame Type Section 4.2.7.3

Subfranme Gins Section 4.2.7.4

Nor mal i zed LSF Stage-1 Tabl e 14

I ndex

Normal i zed LSF St age-2
Resi dua

Section 4.2.7.5.2

Nor mal i zed LSF
I nterpol ati on Wi ght

Tabl e 26 20 nms franme

Primary Pitch Lag Section 4.2.7.6.1 Voi ced franme

Periodicity | ndex Tabl e 37 Voi ced frane
LTP Filter Tabl e 38 Voi ced frame
LTP Scal i ng Tabl e 42 Section 4.2.7.6.3
LCG Seed Tabl e 43
Excitation Rate Level Tabl e 45
Excitation Pul se Counts Tabl e 46

Excitation Pul se Section 4.2.7.8.3 Non-zero pul se

| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
: : : :
| Subfrane Pitch Contour | Tabl e 32 | Voi ced frane

| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

Locati ons count
Excitati on LSBs Tabl e 51 Section 4.2.7.8.2
Excitation Signs Tabl e 52

o o e e oo oo +

Table 5: Order of the Synbols in an Individual SILK Frane

Valin, et al. St andards Track [ Page 39]



RFC 6716 Interactive Audi o Codec Sept enber 2012

4.2.7.1. Stereo Prediction Wights

A SILK frame corresponding to the nid channel of a stereo Opus frane
begins with a pair of side channel prediction weights, designed such
that zeros indicate norrmal nid-side coupling. Since these weights
can change on every franme, the first portion of each frane linearly
i nterpol ates between the previous weights and the current ones, using
zeros for the previous weights if none are available. These
prediction weights are never included in a nono Qpus frame, and the
previ ous weights are reset to zeros on any transition frommono to
stereo. They are also not included in an LBRR franme for the side
channel, even if the LBRR flags indicate the corresponding nid
channel was not coded. |In that case, the previous weights are used,
again substituting in zeros if no previous weights are avail able
since the | ast decoder reset (see Section 4.5.2).

To summari ze, these weights are coded if and only if
0o This is a stereo Qous frame (Section 3.1), and
0 The current SILK frame corresponds to the md channel

The prediction weights are coded in three separate pieces, which are
decoded by silk _stereo_decode pred() (stereo_decode pred.c). The
first piece jointly codes the high-order part of a table index for
bot h wei ghts. The second piece codes the | oworder part of each
table index. The third piece codes an offset used to linearly

i nterpol ate between table indices. The details are as foll ows.

Let n be an index decoded with the 25-el ement stage-1 PDF in Table 6.
Then, let i0 and i1 be indices decoded with the stage-2 and stage-3
PDFs in Table 6, respectively, and let i2 and i3 be two nore indices
decoded with the stage-2 and stage-3 PDFs, all in that order

Fomm - o e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m o +
| Stage | PDF |
Fom e e o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eme— oo +
| Stage | {7, 2, 1, 1, 1, 10, 24, 8, 1, 1, 3, 23, 92, 23, 3, 1, 1,

| 1 | 8, 24, 10, 1, 1, 1, 2, 7}/256 |
| | |
| Stage | {85, 86, 85}/256 |
SN |
| Stage | {51, 51, 52, 51, 51}/256 |
| 3 | |
S o m o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eao o +

Tabl e 6: Stereo Wi ght PDFs

Valin, et al. St andards Track [ Page 40]



RFC 6716 Interactive Audi o Codec Sept enber 2012
Then, use n, i0, and i2 to formtwo table indices, w0 and w 1,
according to

wi 0
w1

i0 + 3*(n/5)
i2 + 3*(nY%)

where the division is integer division. The range of these indices
is Oto 14, inclusive. Let w Q3[i] be the i’th weight from Table 7.
Then, the two prediction weights, wO_Ql3 and wl_Q13, are

wl Q13 = w QL3[wi 1]
+ (((Ww_QL3[wi 1+1] - w QL3[wi 1])*6554) >> 16)*(2*i3 + 1)

wo_QL3

w_QL3[ wi 0]
+ (((W_QL3[wi 0+1] - w QL3[wiO0])*6554) >> 16)*(2*i1 + 1)
- wi_ Qi3

N.B., wi_ QL3 is conputed first here, because wO_Ql3 depends on it.
The constant 6554 is approxinmately 0.1 in Ql6. Although wi0 and wi 1
only have 15 possible values, Table 7 contains 16 entries to allow
i nterpol ation between entry wiO and (W0 + 1) (and |ikewi se for w1).

Valin, et al. St andards Track [ Page 41]



RFC 6716 Interactive Audi o Codec Sept enber 2012

S e +
| I'ndex | Weight (QL3)

Fomeo o oo +
| O | -13732 |
| | |
| 1 | -10050

| | |
| 2 | - 8266 |
| | |
| 3 | - 7526 |
| | |
| 4 | - 6500 |
| | |
| 5 | -5000 |
| | |
| 6 | -2950 |
| | |
| 7 | -820 |
| | |
| 8 | 820 |
| | |
| 9 | 2950 |
| | |
| 10 | 5000

| | |
| 11 | 6500

| | |
| 12 | 7526

| | |
| 13 | 8266

| | |
| 14 | 10050

| | |
| 15 | 13732

Fomm oo o e e oo +

Table 7: Stereo Weight Table
4.2.7.2. Md-Only Flag
A flag appears after the stereo prediction weights that indicates if
only the md channel is coded for this tine interval. It appears
only when

o This is a stereo Qous franme (see Section 3.1),

o The current SILK frame corresponds to the md channel, and

Valin, et al. St andards Track [ Page 42]



RFC 6716 Interactive Audi o Codec Sept enber 2012

o Either

* This is a regular SILK frane where the VAD flags (see
Section 4.2.3) indicate that the correspondi ng side channel is
not acti ve.

* This is an LBRR franme where the LBRR flags (see Sections 4.2.3
and 4.2.4) indicate that the correspondi ng si de channel is not
coded.

It is omtted when there are no stereo weights, for all of the sane
reasons. It is also omitted for a regular SILK frane when the VAD
flag of the corresponding side channel frane is set (indicating it is
active). The side channel nust be coded in this case, naking the
md-only flag redundant. It is also onmitted for an LBRR frame when
the correspondi ng LBRR fl ags indicate the side channel is coded.

When the flag is present, the decoder reads a single value using the
PDF in Table 8, as inplenented in silk stereo_decode nid only()
(stereo_decode pred.c). |If the flag is set, then there is no
corresponding SILK frane for the side channel, the entire decoding
process for the side channel is skipped, and zeros are fed to the
stereo unm xi ng process (see Section 4.2.8) instead. As stated
above, LBRR frames still include this flag when the LBRR fl ag

i ndicates that the side channel is not coded. |In that case, if this
flag is zero (indicating that there should be a side channel), then
Packet Loss Conceal ment (PLC, see Section 4.4) SHOULD be invoked to

recover a side channel signal. QOherw se, the stereo inmage wll
col | apse.

. +

| PDF I

. +

| {192, 64}/256

S +

Table 8. Md-only Flag PDF
4.2.7.3. Franme Type

Each SILK frane contains a single "franme type" synbol that jointly
codes the signal type and quantization offset type of the
corresponding frane. |If the current frane is a regular SILK frane
whose VAD bit was not set (an "inactive" frane), then the frane type
synbol takes on a value of either O or 1 and is decoded using the
first PDF in Table 9. If the frame is an LBRR frane or a regul ar

SI LK franme whose VAD flag was set (an "active" frane), then the val ue
of the synbol may range from2 to 5, inclusive, and is decoded using

Valin, et al. St andards Track [ Page 43]



RFC 6716 Interactive Audi o Codec Sept enber 2012

the second PDF in Table 9. Table 10 transl ates between the val ue of
the frame type synbol and the correspondi ng signal type and
gquanti zation of fset type

| Inactive | {26, 230, 0, 0, 0, 0}/256

| | |
| Active | {0, 0, 24, 74, 148, 10}/ 256

I . e +
| Frane Type | Signal Type | Quantization O fset Type
S B S T +
| O | Inactive | Low
I I I I
| 1 | Inactive | Hi gh
I I I I
| 2 | Unvoiced | Low
I I I I
| 3 | Unvoi ced | Hi gh
I I I I
| 4 | Voiced | Low
I I I I
| 5 | Voiced | Hi gh
S B S T +

Tabl e 10: Signal Type and Quantization O fset Type from Frane Type
4.2.7.4. Subfrane Gains

A separate quantization gain is coded for each 5 ns subfrane. These
gains control the step size between quantization |evels of the
excitation signal and, therefore, the quality of the reconstruction
They are independent of and unrelated to the pitch contours coded for
voi ced frames. The quantization gains are thenmselves uniformy
quantized to 6 bits on a log scale, giving thema resolution of
approxi mately 1.369 dB and a range of approximately 1.94 dB to

88. 21 dB.

The subfrane gains are either coded i ndependently, or relative to the

gain fromthe nost recent coded subfrane in the sane channel
I ndependent coding is used if and only if

Valin, et al. St andards Track [ Page 44]



RFC 6716 Interactive Audi o Codec Sept enber 2012

o0 This is the first subfrane in the current SILK frane, and
o Either

* This is the first SILK frane of its type (LBRR or regular) for
this channel in the current Qous frane, or

*  The previous SILK frane of the same type (LBRR or regular) for
this channel in the same Qpus franme was not coded

In an independently coded subframe gain, the 3 nost significant bits
of the quantization gain are decoded using a PDF selected from
Tabl e 11 based on the decoded signal type (see Section 4.2.7.3).

. I e +
| Signal Type | PDF

B S o e e e e e e e e e e e e e e e e +
| Inactive | {32, 112, 68, 29, 12, 1, 1, 1}/256

| |

| Unvoiced | {2, 17, 45, 60, 62, 47, 19, 4}/256

| | |
| Voiced | {1, 3, 26, 71, 94, 50, 9, 2}/256

Tabl e 11: PDFs for |Independent Quantization Gain MSB Codi ng

The 3 least significant bits are decoded using a uniform PDF

o e e e e e e e eeeaoa +
| PDF |
o o e e e e e e ee e +
| {32, 32, 32, 32, 32, 32, 32, 32}/256 |
oo e e e e e e ee e eeeeaao- +

Tabl e 12: PDF for |ndependent Quantization Gain LSB Codi ng

These 6 bits are conbined to forma val ue, gain_index, between 0 and
63. Wien the gain for the previous subfrane is avail able, then the
current gain is linted as foll ows:

| og_gain = max(gai n_i ndex, previous_log_gain - 16)

This may hel p sone inplenentations Iinmt the change in precision of
their internal LTP history. The indices to which this clanp applies
cannot sinply be renoved from the codebook, because previous_log_gain
will not be available after packet |oss. The clanping is skipped
after a decoder reset, and in the side channel if the previous frane

Valin, et al. St andards Track [ Page 45]



RFC 6716 Interactive Audi o Codec Sept enber 2012

in the side channel was not coded, since there is no value for
previous_log_gain available. It MAY al so be skipped after packet
| oss.

For subfranes that do not have an independent gain (including the
first subfranme of franes not |isted as using independent coding
above), the quantization gain is coded relative to the gain fromthe
previous subfrane (in the sanme channel). The PDF in Table 13 yields
a delta_gai n_i ndex val ue between 0 and 40, incl usive.

o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - +
| PDF |
o o m o e o e e e e e e e eeoe oo +
| {6, 5, 11, 31, 132, 21, 8, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,

| 2, 2, 21, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1}/256 |
o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - +

Tabl e 13: PDF for Delta Quantization Gain Codi ng

The following fornula translates this index into a quantization gain
for the current subframe using the gain fromthe previous subfrane:

log gain = clanp(0, max(2*delta_gain_index - 16,
previous log_gain + delta gain_index - 4), 63)

sil k_gai ns_dequant () (gain_quant.c) dequantizes log_gain for the k’th
subframe and converts it into a linear QL6 scale factor via

gain_QL6[ k] = silk_log2lin((0x1D1C71*l og_gai n>>16) + 2090)

The function silk_log2lin() (log2lin.c) conputes an approxi mation of
2**(inLog_Qr/128.0), where inLog Q7 is its Q7 input. Let i =

i nLog_Q7>>7 be the integer part of inLogQ7 and f = inLog_Q7&127 be
the fractional part. Then

(1<<i) + ((-174*f*(128-1)>>16)+f)*((1<<i)>>7)
yi el ds the approxi mate exponential. The final QL6 gain values lies
bet ween 81920 and 1686110208, inclusive (representing scale factors
of 1.25 to 25728, respectively).

4.2.7.5. Nornmalized Line Spectral Frequency (LSF) and Linear Predictive
Codi ng (LPC) Coefficients

A set of normalized Line Spectral Frequency (LSF) coefficients foll ow

the quantization gains in the bitstream and represent the Linear
Predictive Coding (LPC) coefficients for the current SILK frane.

Valin, et al. St andards Track [ Page 46]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Once decoded, the nornalized LSFs forman increasing list of QL5

val ues between 0 and 1. These represent the interleaved zeros on the
upper half of the unit circle (between 0 and pi, hence "nornalized")
in the standard deconposition [ SPECTRAL-PAIRS] of the LPC filter into
a symmetric part and an anti-symetric part (P and Qin

Section 4.2.7.5.6). Because of non-linear effects in the decoding
process, an inplenentation SHOULD match the fixed-point arithnetic
described in this section exactly. An encoder SHOULD al so use the
same process

The nornalized LSFs are coded using a two-stage vector quantizer (VQ
(Sections 4.2.7.5.1 and 4.2.7.5.2). NB and MB franes use an order-10
predictor, while WB franes use an order-16 predictor. Thus, each of
these two cases uses a different set of tables. After reconstructing
the normalized LSFs (Section 4.2.7.5.3), the decoder runs them
through a stabilization process (Section 4.2.7.5.4), interpol ates
them between franes (Section 4.2.7.5.5), converts them back into LPC
coefficients (Section 4.2.7.5.6), and then runs themthrough further
processes to limt the range of the coefficients (Section 4.2.7.5.7)
and the gain of the filter (Section 4.2.7.5.8). Al of thisis
necessary to ensure the reconstruction process is stable.

4.2.7.5.1. Nornalized LSF Stage 1 Decodi ng
The first VQ stage uses a 32-el enent codebook, coded with one of the
PDFs in Table 14, depending on the audi o bandwi dth and t he signa
type of the current SILK frame. This yields a single index, 11, for
the entire frame, which
1. Indexes an elenment in a coarse codebook
2. Selects the PDFs for the second stage of the VQ and

3. Selects the prediction weights used to renove intra-frane
redundancy fromthe second stage

The actual codebook el enents are listed in Tables 23 and 24, but they

are not needed until the last stages of reconstructing the LSF
coefficients.

Valin, et al. St andards Track [ Page 47]



RFC 6716 Interactive Audi o Codec Sept enber 2012

S B oo o e e e e e e e e e e e e e e e e e e e eaa +
| Audio | Signal | PDF |
| Bandwidth | Type | |
S S Fom e e e e e e e e e e m e e e e e am o +
| NBor MB | Inactive | {44, 34, 30, 19, 21, 12, 11, 3, 3, 2, 16,

| | or | 2, 2, 1, 5, 2,1, 3, 3, 1, 1, 2, 2, 2, 3,

| | unvoiced | 1, 9, 9, 2, 7, 2, 1}/256 |
| | | |
| NB or MB | Voiced | {1, 10, 1, 8, 3, 8, 8, 14, 13, 14, 1, 14,

| | | 12, 13, 11, 11, 12, 11, 10, 10, 11, 8, 9,

| | | 8 7, 8 1, 1, 6, 1, 6, 5}/256

| | | |
| WB | Inactive | {31, 21, 3, 17, 1, 8, 17, 4, 1, 18, 16, 4,

| | or | 2, 3, 1, 10, 1, 3, 16, 11, 16, 2, 2, 3, 2,

| | unvoiced | 11, 1, 4, 9, 8, 7, 3}/256 |
| | | |
| WB | Voiced | {1, 4, 16, 5, 18, 11, 5, 14, 15, 1, 3, 12,

| | | 13, 14, 14, 6, 14, 12, 2, 6, 1, 12, 12, |
| | | 11, 10, 3, 10, 5, 1, 1, 1, 3}/256
R [ T oo o e e e e e e e e e e e e e e e e e ee e eaaa - +

Tabl e 14: PDFs for Normalized LSF Stage-1 I ndex Decoding
4.2.7.5.2. Nornalized LSF Stage 2 Decodi ng

A total of 16 PDFs are available for the LSF residual in the second
stage: the 8 (a...h) for NB and MB franes given in Table 15, and the
8 (i...p) for WB franmes given in Table 16. Wich PDF is used for

whi ch coefficient is driven by the index, 11, decoded in the first
stage. Table 17 lists the letter of the correspondi ng PDF for each
normal i zed LSF coefficient for NB and MB, and Table 18 lists the sane
i nformati on for WB.

Valin, et al. St andards Track [ Page 48]



RFC 6716 Interactive Audi o Codec Sept enber 2012

B oo o e e e e e e e e e e e e e eeea oo +
| Codebook | PDF |
[ T o m e e e e e e e e e e e e e ma— oo +
| a | {1, 1, 1, 15, 224, 11, 1, 1, 1}/256

| | |
| b | {1, 1, 2, 34, 183, 32, 1, 1, 1}/256

| | |
| ¢ | {1, 1, 4, 42, 149, 55, 2, 1, 1}/256

| | |
| d | {1, 1, 8, 52, 123, 61, 8, 1, 1}/256

| | |
| e | {1, 3, 16, 53, 101, 74, 6, 1, 1}/256

| | |
| f | {1, 3, 17, 55, 90, 73, 15, 1, 1}/256

| | |
| 9 | {1, 7, 24, 53, 74, 67, 26, 3, 1}/256

| | |
| h | {1, 1, 18, 63, 78, 58, 30, 6, 1}/256

B oo o e e e e e e e e e e e e e eeea oo +

{1, 1, 1, 9, 232, 9, 1, 1, 1}/256

| | |
I i I {1, 1, 2, 28, 186, 35, 1, 1, 1}/256 I
I k I {1, 1, 3, 42, 152, 53, 2, 1, 1}/256 I
I | I {1, 1, 10, 49, 126, 65, 2, 1, 1}/256 I
I m I {1, 4, 19, 48, 100, 77, 5, 1, 1}/256 I
I n I {1, 1, 14, 54, 100, 72, 12, 1, 1}/256I
I 0 I {1, 1, 15, 61, 87, 61, 25, 4, 1}/256 I
I p I {1, 7, 21, 50, 77, 81, 17, 1, 1}/256 I
o me e o e e e e e e e e e meee—a- +

Tabl e 16: PDFs for WB Normalized LSF Stage-2 |Index Decoding

Valin, et al. St andards Track [ Page 49]



Sept enber 2012

Interactive Audi o Codec

RFC 6716

o e e

Coef fici ent

[ Page 50]

St andards Track

et al.

Val i n,



RFC 6716 Interactive Audi o Codec Sept enber 2012

| 22| ef f eggf gf e]|
I23IcffgfgegeeI
I24IefffdheffeI
I25cheffgeffeI
I26chcddecdddI
IZ?Ibbcccccdch
I28IeffgggfgefI
I29Idffeeeedch
I30IcfdhffeefeI
I31IeefefgfgfeI
e e e e e e e e e e +

Tabl e 17: Codebook Sel ection for NB/MB Nornumlized LSF Stage-2 | ndex
Decodi ng

| | |
IOIIIIIIiIIIIIIIIIII
IlIk|||||kkkkkjjjl|I
IZIknnIpmmnknmnnmllI
I3I|klkkjlllllllllll
I4I|onmompnmmmnnmmII
ISIlInnmIInIIIIIIka
I6I|||||i||||||||||l
I?IlkolpknlmnnmllkII
I8I|okoomnmonmmnIIII
Iglkjlliilllllllllll

Valin, et al. St andards Track [ Page 51]



Sept enber 2012

Interactive Audi o Codec

RFC 6716

_ — — & - - E E £ - E _ E 4 - - B _— 4 = -
=
- XX xx & _ - - € M - X X _ . - .- B - x . - .-
- X _ ¢ & - & € @ -2 i@ e = .. &8 - o - ~ .. .. =t
- - —- E E - & £ X 2 @ - - - & - o - xx ._. x o
- - — & o - & - & D@ i-m £ - £ - .- & x~x .. .. x~x x
- — — £ £ .. € - X . .M - B c c - & x . o — .
- —m — — 0 . & x .., xx .., £ & £ €& . - - xx ~x x x
- - - £ X .., - £ xx xx ~x & _ _ & - © — o = - -
- - — & £ .. £ - - xXx xx £ £ & o .. £ - x x~x _ _
- — — & o .. & _ xx _. _ & _ & €& - x~ & - - < -
-  © &€ o & .. ¢ & xx . _ o o &€ ©0 .- ¢ .- —_- ao €t
- & _ E £ .. o & x £ £ o o0 &£ 0 4@ — —- - < & _
- - - & £E&E - € 0 0 0 -0 - € - - .m o0 9 .. x ¢ «c
- ¥ ¥ &€ ©o ... 0 — - x & ©O0 —- —_— €€ ©0 0 — = — < -
- X X _— e e M e X . . X X . X ol e m — X
2 343 3 323353 3233 I3 Q83T 3 8 >

Tabl e 18: Codebook Sel ection for WB Normalized LSF Stage-2 |ndex

Decodi ng

[ Page 52]

St andards Track

et al.

Val i n,



RFC 6716 Interactive Audi o Codec Sept enber 2012

Decodi ng the second stage residual proceeds as follows. For each
coefficient, the decoder reads a synbol using the PDF correspondi ng
to 11 fromeither Table 17 or Table 18, and subtracts 4 fromthe
result to give an index in the range -4 to 4, inclusive. |If the
index is either -4 or 4, it reads a second synbol using the PDF in
Tabl e 19, and adds the value of this second synbol to the index,
using the sane sign. This gives the index, 12[k], a total range of
-10 to 10, inclusive.

e e e e +
| PDF |
o +
| {156, 60, 24, 9, 4, 2, 1}/256 |
o e e e e eeee oo +

Tabl e 19: PDF for Normalized LSF | ndex Extension Decodi ng

The decoded indices fromboth stages are translated back into
normal i zed LSF coefficients in silk NLSF decode() (NLSF decode.c).
The stage-2 indices represent residuals after both the first stage of
the VQ and a separate backwards-prediction step. The backwards

predi ction process in the encoder subtracts a prediction from each
residual forned by a nmultiple of the coefficient that follows it.

The decoder nust undo this process. Table 20 contains |ists of

predi ction weights for each coefficient. There are two lists for NB
and MB, and another two lists for WB, giving two possible prediction
wei ghts for each coefficient.

Valin, et al. St andards Track [ Page 53]



RFC 6716

Tabl e 20: Prediction Wights for

S R
| Coefficient | A
S S e ——
| O | 179 |
| |
| 1 | 138
| |
| 2 | 140
| |
| 3 | 148
| |
| 4 | 151
| |
| 5 | 149
| |
| 6 | 153
| |
| 7 | 151
| |
| 8 | 163
| |
| 9 |
| |
| 10 |
| |
| 11 |
| |
| 12 |
| |
| 13 |
| |
| 14 |
S S e ——

116

67

82

59

92

72

100

89

92

Interactive Audi o Codec

_____ P
cC| D
_____ P
175 | 68
148 I 62
160 I 66
176 I 60
178 I 72
173 I 117
174 I 85
164 I 90
177 I 118
174 I 136
196 I 151
182 I 142
198 I 160
192 I 142
182 I 155
_____ P

Sept enber 2012

Nor mal i zed LSF Decodi ng

The prediction is undone using the procedure inplenented in
sil k_NLSF_residual dequant () (NLSF _decode.c),
Each coefficient selects its prediction weight fromone of the two
lists based on the stage-1 index,
NB and MB, and Tabl e 22 gives the sel ections

for each coefficient for
for VB.

I 1.

which is as foll ows.

Let d_LPC be the order of the codebook, i.e.

Tabl e 21 gives the sel ections

10 for NB and

MB, and 16 for WB, and let pred @B[k] be the weight for the k'th
coefficient selected by this process for 0 <= k < d LPC-1. Then, the

stage-2 residua

Val i n,

res_QL0[ k]

et al.

for each coefficient

is conputed via

= (k+1 < d_LPC ? (res_QLO[ k+1] *pred_@B[k])>>8 : 0)

+ ((((12[k]<<10)

St andards Track

sign(l2[k])*102) *gst ep) >>16) ,

[ Page 54]



RFC 6716 Interactive Audi o Codec Sept enber 2012

where gstep is the QL6 quantization step size, which is 11796 for NB
and MB and 9830 for WB (representing step sizes of approximtely 0.18
and 0.15, respectively).

| | |
Io IABAAAAAAAI
Il IBAAAAAAAAI
Iz IAAAAAAAAAI
I3IBBBAAAABAI
I4 IABAAAAAAAI
Is IABAAAAAAAI
I6IBABBAAABAI
I7IABBAABBAAI
ISIAABBABABBI
IQIAABBAABBBI
I 10I AAAAAAAAAI
IllI ABABBBBBAI
I12I ABABBBBBAI
I13I ABBBBBBBAI
I14I BABBABBBBI
I15I ABBBBBABAI
IIGI AABBABABAI
Il?I AABBBABBBI
I18I ABBAABBBAI
Ilgl AAABBBABAI

Valin, et al. St andards Track [ Page 55]



RFC 6716 Interactive Audi o Codec Sept enber 2012

20

w
w
w

21

>
> > >
o @
® > >

22

23

w
w
w
w

24

25

26

27

> » >» » » » » » >
> » » » » » W r r r W
w > > W > > W >

> » » W W
> ® » W » » W > »r » > >

@ > » ® >» » W W > W >

28

w

w

o @ >» >» » »>» ® W > W W >
@® > > W >» > W @
@ @ > > > > >

Tabl e 21: Prediction Wight Selection for NB/MB Normalized LSF
Decodi ng

O O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

Valin, et al. St andards Track [ Page 56]



RFC 6716 Interactive Audi o Codec Sept enber 2012

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

O o o o o o o o o o o o o o o o o o o o o o O 0
o o o o o 60 o o o o o o o o o oo o o o o o o oo
o o 0o o o 60 u u o o o 60 U uu o o o0 oo oo o o o oo
o o o o 60 o 6o U o o o o o o oo o o o o o o oo o o
o o o o 60 u u u o o o o o o o o o o oo o o oo o o
o 0 o o o o 60 u o o o o o o 60 u U uu oo o o o o o
o o0 60 u 60 u u 6o oo o o o o0 o o oo o o oo o o o oo
O 60 U u o o o o o o o 60 U U o 6o U o oo o o o o o
o 60 o o 6 u u u u o0 o o o0 uu o oo o o oo o o o oo
o 60 o o 6o o o o o o o o 60 U o uu U uu oo o o o oo
O 606 U u 60 o o 60 oo o o 60 U uu 60 uu o o oo o o o oo
o o 60 o 6o o 0o U o o o o o o o o o o o o o o o o
O 6 o o o0 o o o o oo o o o v Ut U U OO o o o o o
O 60 U U 60 U U O U o o o o o U oo o o o o o o o o
o U U U U U O O o o o o o o o oo o o o u o o o

29

Valin, et al. St andards Track [ Page 57]



RFC 6716 Interactive Audi o Codec Sept enber 2012

30 D CcCcCcCZcCcZcCc<c<c<c<c<c<cbT¢cocc|

| |

> |
| 31|l ccDbccDDDT¢CCDTCTCDC
o e e e e e e e e e meeeo—ao- +

Tabl e 22: Prediction Wight Selection for WB Nornalized LSF Decodi ng
4.2.7.5.3. Reconstructing the Normalized LSF Coefficients

Once the stage-1 index 11 and the stage-2 residual res_QLO[] have
been decoded, the final nornalized LSF coefficients can be
reconstruct ed.

The spectral distortion introduced by the quantization of each LSF
coefficient varies, so the stage-2 residual is weighted accordingly,
using the | ow complexity Inverse Harnonic Mean Wi ghting (1 HWY
function proposed in [ LAROA-1CASSP]. The weights are derived
directly fromthe stage-1 codebook vector. Let cbhl @B[k] be the k’'th
entry of the stage-1 codebook vector from Table 23 or Table 24.

Then, for 0 <= k < d_LPC, the foll owi ng expressi on conputes the
square of the weight as a QL8 val ue:

w2_Q18[ k] = (1024/(cbl_GB[k] - cbl_@B[k-1])
+ 1024/ (cbl_QB[k+1] - cbl _QB[k])) << 16

where cbl B[-1] = 0 and cbl @B[d_LPC] = 256, and the division is
integer division. This is reduced to an unsquared, @ val ue using
the foll owi ng square-root approximation:

i =i

f = (w2_Q18[k]>>(i-8)) & 127

y = ((i&l) ? 32768 : 46214) >> ((32-i)>>1)
w_QB[K] =y + ((213*f*y)>>16)

The constant 46214 here is approximtely the square root of 2 in QL5.
The cbl B[] vector conpletely determ nes these weights, and they may
be tabul ated and stored as 13-bit unsigned values (with a range of
1819 to 5227, inclusive) to avoid conputing them when decoding. The
reference inplenentation already requires code to conpute these

wei ghts on unquantized coefficients in the encoder, in

si |l k_NLSF_VQ wei ghts_laroia() (NLSF_VQ weights_laroia.c) and its
callers, so it reuses that code in the decoder instead of using a
pre-conputed table to reduce the amount of ROM required.

Valin, et al. St andards Track [ Page 58]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0 12 35 60 83 108 132 157 180 206 228
1 15 32 55 77 101 125 151 175 201 225
2 19 42 66 89 114 137 162 184 209 230
3 12 25 50 72 97 120 147 172 200 223
4 26 44 69 90 114 135 159 180 205 225
5 13 22 53 80 106 130 156 180 205 228
6 15 25 44 64 90 115 142 168 196 222
7 19 24 62 82 100 120 145 168 190 214
8 22 31 50 79 103 120 151 170 203 227
9 21 29 45 65 106 124 150 171 196 224

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
o | :
| 10 | 30 49 75 97 121 142 165 186 209 229

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

11 19 25 52 70 93 116 143 166 192 219
12 26 34 62 75 97 118 145 167 194 217
13 25 33 56 70 91 113 143 165 196 223
14 21 34 51 72 97 117 145 171 196 222
15 20 29 50 67 90 117 144 168 197 221
16 22 31 48 66 95 117 146 168 196 222
17 24 33 51 77 116 134 158 180 200 224
18 21 28 70 87 106 124 149 170 194 217
19 26 33 53 64 83 117 152 173 204 225
20 27 34 65 095 108 129 155 174 210 225
21 20 26 72 99 113 131 154 176 200 219

Valin, et al. St andards Track [ Page 59]



RFC 6716 Interactive Audi o Codec Sept enber 2012

22 34 43 61 78 93 114 155 177 205 229
23 23 29 54 97 124 138 163 179 209 229
24 30 38 56 89 118 129 158 178 200 231
25 21 29 49 63 85 111 142 163 193 222

| |
| |
| |
| |
| |
| |
| |
-
| 26 | 27 48 77 103 133 158 179 196 215 232
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

27 29 47 74 99 124 151 176 198 220 237
28 33 42 61 76 93 121 155 174 207 225
29 29 53 87 112 136 154 170 188 208 227
30 24 30 52 84 131 150 166 186 203 229
31 37 48 64 84 104 118 156 177 201 230
Fom e oo +

0 7 23 38 54 69 85 100 116 131 147 162 178 193 208 223 239
1 13 25 41 55 69 83 98 112 127 142 157 171 187 203 220 236
2 15 21 34 51 61 78 92 106 126 136 152 167 185 205 225 240
3 10 21 36 50 63 79 95 110 126 141 157 173 189 205 221 237

| |
| |
| |
| |
| |
| |
| |
| |
]
| 4 | 17 20 37 51 59 78 89 107 123 134 150 164 184 205 224 240
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

5 10 15 32 51 67 81 96 112 129 142 158 173 189 204 220 236
6 8 21 37 51 65 79 98 113 126 138 155 168 179 192 209 218
7 12 15 34 55 63 78 87 108 118 131 148 167 185 203 219 236
8 16 19 32 36 56 79 91 108 118 136 154 171 186 204 220 237
9 11 28 43 58 74 89 105 120 135 150 165 180 196 211 226 241

Valin, et al. St andards Track [ Page 60]



RFC 6716 Interactive Audi o Codec Sept enber 2012

I 10 I 6 16 33 46 60 75 92 107 123 137 156 169 185 199 214 225
I 11 I 11 19 30 44 57 74 89 105 121 135 152 169 186 202 218 234
I 12 I 12 19 29 46 57 71 88 100 120 132 148 165 182 199 216 233
I 13 I 17 23 35 46 56 77 92 106 123 134 152 167 185 204 222 237
I 14 I 14 17 45 53 63 75 89 107 115 132 151 171 188 206 221 240
I 15 I 9 16 29 40 56 71 88 103 119 137 154 171 189 205 222 237
I 16 I 16 19 36 48 57 76 87 105 118 132 150 167 185 202 218 236
I 17 I 12 17 29 54 71 81 94 104 126 136 149 164 182 201 221 237
I 18 I 15 28 47 62 79 97 115 129 142 155 168 180 194 208 223 238
I 19 I 8 14 30 45 62 78 94 111 127 143 159 175 192 207 223 239
I 20 I 17 30 49 62 79 92 107 119 132 145 160 174 190 204 220 235
I 21 I 14 19 36 45 61 76 91 108 121 138 154 172 189 205 222 238
I 22 I 12 18 31 45 60 76 91 107 123 138 154 171 187 204 221 236
I 23 I 13 17 31 43 53 70 83 103 114 131 149 167 185 203 220 237
I 24 I 17 22 35 42 58 78 93 110 125 139 155 170 188 206 224 240
I 25 I 8 15 34 50 67 83 99 115 131 146 162 178 193 209 224 239
I 26 I 13 16 41 66 73 86 95 111 128 137 150 163 183 206 225 241
I 27 I 17 25 37 52 63 75 92 102 119 132 144 160 175 191 212 231
I 28 I 19 31 49 65 83 100 117 133 147 161 174 187 200 213 227 242
I 29 I 18 31 52 68 88 103 117 126 138 149 163 177 192 207 223 239
I 30 I 16 29 47 61 76 90 106 119 133 147 161 176 193 209 224 240
I 31 I 15 21 35 50 61 73 86 97 110 119 129 141 175 198 218 237
e +

Tabl e 24: WB Nornalized LSF Stage-1 Codebook Vectors

Valin, et al. St andards Track [ Page 61]



RFC 6716 Interactive Audi o Codec Sept enber 2012

G ven the stage-1 codebook entry chl B[], the stage-2 residua
res_QLO[], and their correspondi ng weights, w @[], the reconstructed
normal i zed LSF coefficients are

NLSF_Q15[ k] = cl anmp(O,
(cb1_@B[ k] <<7) + (res_QLO[k]<<14)/w Q[K], 32767)

where the division is integer division. However, nothing in either
the reconstruction process or the quantization process in the encoder
thus far guarantees that the coefficients are nmonotonically

i ncreasing and separated well enough to ensure a stable filter

[ KABAL86]. When using the reference encoder, roughly 2% of franes
violate this constraint. The next section describes a stabilization
procedure used to nake t hese guarantees.

4.2.7.5. 4. Normal i zed LSF Stabilization

The nornalized LSF stabilization procedure is inplenented in

sil k_NLSF _stabilize() (NLSF_stabilize.c). This process ensures that
consecutive values of the normalized LSF coefficients, NLSF_QL5[],
are spaced sone mini num di stance apart (predetermned to be the 0.01
percentile of a large training set). Table 25 gives the m nimum
spacings for NB and MB and those for WB, where row k is the m ni num
al | oned val ue of NLSF Q15[ k] - NLSF_Q15[ k-1]. For the purposes of
conputing this spacing for the first and | ast coefficient,

NLSF Q15[-1] is taken to be 0 and NLSF Q15[d LPC] is taken to be
32768.

Valin, et al. St andards Track [ Page 62]



RFC 6716 Interactive Audi o Codec Sept enber 2012

T S +--m - - +
| Coefficient | NBand MB| WB
B R +-- - - - +
| O | 250 | 100
| | | |
| 1 | 31 3|
| | | |
| 2 | 6| 40|
| | | |
| 3 | 31 3]
| | | |
| 4 | 31 3|
| | | |
| 5 | 31 3]
| | | |
| 6 | 41 5|
| | | |
| 7 | 31 14|
| | | |
| 8 | 3| 14|
| | | |
| 9 | 3] 10|
| | | |
| 10 | 461 | 11
| | | |
| 11 | | 3
| | | |
| 12 | | 8|
| | | |
| 13 | | 9|
| | | |
| 14 | | 7
| | | |
| 15 | | 3
| | | |
| 16 | | 347
T S +--m - - +

Tabl e 25: M ni num Spaci ng for Normalized LSF Coefficients

The procedure starts off by trying to make snmall adjustnents that
attenpt to minimze the anount of distortion introduced. After 20
such adjustnents, it falls back to a nore direct nethod that
guarantees the constraints are enforced but may require |arge

adj ust ment s.

Valin, et al. St andards Track [ Page 63]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Let NDeltaM n_QL5[ k] be the m ni mumrequired spacing for the current
audi o bandwi dth from Table 25. First, the procedure finds the index
i where NLSF_QL5[i] - NLSF_Q15[i-1] - NDeltaM n_QIL5[i] is the

smal | est, breaking ties by using the lower value of i. |If this value
i s non-negative, then the stabilization stops; the coefficients
satisfy all the constraints. Oherwise, if i == 0, it sets

NLSF Q15[0] to NDeltaM n_Q15[0], and if i == d LPC, it sets

NLSF Q15[d _LPC-1] to (32768 - NDeltaM n_QL5[d LPC]). For all other
val ues of i, both NLSF_QL5[i-1] and NLSF_Ql5[i] are updated as
fol |l ows:

i-1

mn_center QL5 = (NDeltaM n_Q15[i]>>1) + \ NDeltaM n_QL5[ k]
/

k=0
d_LPC

32768 - (NDeltaM n_QL5[i]>>1) - \ NDeltaM n_Q15[K]

mex_center Q15

k=i +1

center_freq_QL5 clamp(m n_center_Q15[i],
(NLSF_Q15[i-1] + NLSF_QL5[i] + 1)>>1

max_center _QL5[i])

NLSF_Q15[i - 1] center_freq_QL5 - (NDeltaM n_QL5[i]>>1)

NLSF_QL5[i]

NLSF_Q5[i-1] + NDeltaM n_QL5[i]

Then, the procedure repeats again, until it has either executed 20
times or stopped because the coefficients satisfy all the
constraints.

After the 20th repetition of the above procedure, the follow ng
fall back procedure executes once. First, the values of NLSF_QL5[ k]
for 0 <= k < d LPC are sorted in ascending order. Then, for each
value of k fromO to d LPC-1, NLSF Ql5[k] is set to

max( NLSF_QL5[ k], NLSF_QL5[ k-1] + NDeltaM n_QL5[k])

Next, for each value of k fromd LPC-1 down to O, NLSF _QL5[k] is set
to

m n(NLSF_QL5[ k], NLSF_QL5[ k+1] - NDeltaM n_QL5[ k+1])
There is no need to check if the coefficients satisfy all the

constraints before applying this fallback procedure. 1f they do,
then it will not change their val ues.

Valin, et al. St andards Track [ Page 64]



RFC 6716 Interactive Audi o Codec Sept enber 2012

4.2.7.5.5. Nornalized LSF Interpolation

For 20 ms SILK franmes, the first half of the frane (i.e., the first
two subfranmes) may use normalized LSF coefficients that are

i nterpol ated between the decoded LSFs for the nost recent coded frane
(in the sane channel) and the current frane. A @ interpolation
factor follows the LSF coefficient indices in the bitstream which is
decoded using the PDF in Table 26. This happens in

sil k_decode_i ndi ces() (decode_indices.c). After either

0 An uncoded regular SILK frane in the side channel, or
0 A decoder reset (see Section 4.5.2),
the decoder still decodes this factor, but ignores its value and

al ways uses 4 instead. For 10 ms SILK franmes, this factor is not
stored at all.

o o e e ee oo +
| PDF |
o e e e ee e +
| {13, 22, 29, 11, 181}/256

o e e e m e eeeao s +

Tabl e 26: PDF for Normalized LSF Interpol ation | ndex

Let n2_Q15[k] be the nornalized LSF coefficients decoded by the
procedure in Section 4.2.7.5, n0_QLl5[k] be the LSF coefficients
decoded for the prior frame, and w (2 be the interpolation factor
Then, the normalized LSF coefficients used for the first half of a
20 ms frane, nl _QL5[k], are

nl_QI5[k] = n0O_QI5[k] + (w_Q@*(n2_QI5[k] - nO_QI5[k]) >> 2)

This interpolation is performed in silk_decode_paraneters()
(decode_paraneters.c).

4.2.7.5.6. Converting Normalized LSFs to LPC Coefficients

Any LPC filter A(z) can be split into a symetric part P(z) and an
anti-symetric part Qz) such that

1
>
[

a[k] *z =-* (P(2) + Q2))

=~~~ —|
N

Valin, et al. St andards Track [ Page 65]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Wi th

-d_LPC-1 -1

P(z2) A(z) + z * Az )

~d_LPC-1 1
A(z) - z * Az )

Q2)

The even normalized LSF coefficients correspond to a pair of
conjugate roots of P(z), while the odd coefficients correspond to a
pair of conjugate roots of (z), all of which lie on the unit circle.
In addition, P(z) has a root at pi and Q(z) has a root at 0. Thus,
they may be reconstructed mathematically froma set of nornalized LSF
coefficients, n[k], as

d_LPC/ 2-1
-1 L -1 -2
P(z) =(1+2z )* | ] (1- 2*cos(pi*n[2*k])*z + z )
k=0
d_LPC 2-1
-1 s -1 -2
Qz) =(1-2 ) * [ 1 (1- 2*cos(pi*n[2*k+1])*z + z )
k=0

However, SILK perforns this reconstruction using a fixed-point
approxi mati on so that all decoders can reproduce it in a bit-exact
manner to avoid prediction drift. The function silk_NLSF2A()
(NLSF2A.c) inplements this procedure.

To start, it approxinmates cos(pi*n[k]) using a table | ookup with
linear interpolation. The encoder SHOULD use the inverse of this
pi ecewi se |inear approximation, rather than the true inverse of the
cosi ne function, when deriving the normalized LSF coefficients.
These val ues are also re-ordered to inprove numerical accuracy when
constructing the LPC pol ynom al s.

Valin, et al. St andards Track [ Page 66]



RFC 6716 Interactive Audi o Codec Sept enber 2012

T S +----+
| Coefficient | NB and MB | WB
B R +----+
| O | 0| 0]
| | | |
| 1 | 9| 15|
| | | |
| 2 | 6 8]
| | | |
| 3 | 31 71
| | | |
| 4 | 41 4|
| | | |
| 5 | 51 11|
| | | |
| 6 | 8| 12 |
| | | |
| 7 | 1] 3]
| | | |
| 8 | 2|1 2]
| | | |
| 9 | 7] 13|
| | | |
| 10 | | 10
| | | |
| 11 | | 5|
| | | |
| 12 | | 6]
| | | |
| 13 | | 9|
| | | |
| 14 | | 14
| | | |
| 15 | | 1]
B S S +--- -+

Tabl e 27: LSF Ordering for Pol ynom al Eval uation

The top 7 bits of each normalized LSF coefficient index a value in
the table, and the next 8 bits interpolate between it and the next
value. Let i = (n[k] >> 8) be the integer index and f = (n[k] & 255)
be the fractional part of a given coefficient. Then, the re-ordered,
approxi mated cosine, c_Ql7[ordering[k]], is

c_Ql7[ordering[k]] = (cos_QL2[i]*256
+ (cos_QL2[i+1]-cos_QL2[i])*f + 4) >> 3

Valin, et al. St andards Track [ Page 67]



Sept enber 2012

Interactive Audi o Codec

RFC 6716

is the k"th entry of the colum of Table 27

wher e orderi ng[ k]

is the

corresponding to the current audi o bandwi dth and cos_QL2[i]

i'th entry of Table 28.

+0 | +1 | +2 | +3

e e e e e a oo
e

To] O [e®) N [*2) — (2} N~ © (*2} ) o To] N~ — - I o ™ < O\
[c0] ™ < [ Lo O N © N~ To] I © [e0] )] o o o o (<2} N~ <
o o (@] [e0] O < [N (@) © ™ o © N [co] Lo - ™ N~ o < loo]
< < ™ ™ ™ ™ o™ N N N N — - ' 1 i - —
1 1 1

- (9N ™ N~ ™ ™ o L0 — o © — o 0o — - I — To] o —
(<2} 0o N~ To] o — (2} ™ Lo < o Lo [e0] [e2) o o o o (<2} [e0) Lo
o o (@] [e0] N~ Lo [N o N~ < — N~ o™ 2] © N N © (o2} ™ N~
< < ™ ™ ™ ™ o™ ™ N N N — - ' 1 1 i —
1 1

0 Lo N~ (*2} Lol < ] N < o - N < ™ o - I — N~ L0 o
[<2] (o] o] [o°] <t © < o AN (9N ) < N~ [e2) o o o o (*2} [e0] ©
o o (@] [e0] N~ Lo ™ I [e0] Te] — [c0] < o N~ o™ i Lo [ce} N ©
< < ™ ™ ™ ™ o™ ™ N N N — - i ' 1 1 i —
1 1

O © N~ o < ™ © © O (<2} © — [ce} )] (o) - o — (<2} [*)) [o0]
(<2} N~ — (9N [e0] — o © (@] (*2} N~ ™ O [c0] (@] o o (e} [c0] ©
o o o (*2} N~ O < I [e0] Te] N o Te] - N~ < < N~ — Lo
< < < ™ ™ ™ o™ ™ N N N — - i 1 1 - -
1 1

[ Page 68]

St andards Track

et al.

Val i n,



RFC 6716 Interactive Audi o Codec Sept enber 2012

I 84 I -1931 I -2019 I -2106 I -2191
I 88 I - 2276 I - 2359 I - 2440 I - 2520
I 92 I - 2599 I - 2676 I - 2751 I - 2824
I 96 I - 2896 I - 2967 I -3035 I -3102
I 100 I - 3166 I -3229 I -3290 I - 3349
I 104 I - 3406 I - 3461 I -3513 I - 3564
I 108 I -3613 I - 3659 I -3703 I -3745
I 112 I -3784 I - 3822 I - 3857 I - 3889
I 116 I -3920 I -3948 I -3973 I -3997
I 120 I - 4017 I - 4036 I - 4052 I - 4065
I 124 I - 4076 I - 4085 I - 4091 I - 4095
I 128 I - 4096 I I I I
oo - - - - +

Tabl e 28: Ql2 Cosine Table for LSF Conversion

G ven the list of cosine values, silk_NLSF2A find_poly() (NLSF2A. c)
conputes the coefficients of P and Q described here via a sinple
recurrence. Let p QL6[Kk][j] and q _QL6[k][j] be the coefficients of
the products of the first (k+1) root pairs for Pand Q wth j

i ndexi ng the coefficient nunmber. Only the first (k+2) coefficients
are needed, as the products are symetric. Let

p_QL6[0][0] = q_QL6[0][0] = 1<<16, p_QL6[0][1] = -c_Q17[0],
g_QL6[0][1] = -c_QL7[1], and d2 = d_LPC/2. As boundary conditions,
assune p_QL6[k][j] = g _Q6[K][j] =0 for all j < 0. Also, assunme
p_QA6[Kk][k+2] = p_QL6[Kk][k] and g_QL6[Kk][k+2] = g_QL6[K][k] (because
of the symmetry). Then, for 0 < k < d2 and 0 <= j <= k+1

p_QL6[K][j] = p_QL6[k-1][j] + p_QL6[k-1][]-2]
- ((c_QL7[2*k] *p_QL6[ k-1][j-1] + 32768)>>16)
q_QL6[K][j] = g _Q6[Kk-1][j] + q_QL6[k-1][]-2]

- ((c_QU7[2*k+1] *q_QL6[ k-1][j-1] + 32768)>>16)

Valin, et al. St andards Track [ Page 69]



RFC 6716 Interactive Audi o Codec Sept enber 2012

The use of QL7 values for the cosine terns in an otherw se QL6
expression inplicitly scales themby a factor of 2. The
multiplications in this recurrence may require up to 48 bits of
precision in the result to avoid overflow. In practice, each row of
the recurrence only depends on the previous row, so an inplenentation
does not need to store all of them

si | k_NLSF2A() uses the values fromthe last row of this recurrence to
reconstruct a 32-bit version of the LPC filter (w thout the |eading
1.0 coefficient), a32_QL7[k], 0 <= k < d2:

a32_QL7[ k] = -(9_Q16[d2-1] [k+1] - q_QL6[d2-1][k])
- (p_Q16[d2-1] [k+1] + p_Q16[d2-1][k]))

(q_QL6[d2- 1] [k+1] - q_QL6[d2-1][K])
- (p_QL6[d2-1] [k+1] + p_Q16[d2-1][k]))

The sum and difference of two terns fromeach of the p_Ql6 and q_Ql6
coefficient lists reflect the (1 + z**-1) and (1 - z**-1) factors of
P and Q respectively. The pronotion of the expression fromQl6 to
QL7 inmplicitly scales the result by 1/2.

a32_QL7[ d_LPC k- 1]

4.2.7.5.7. Limting the Range of the LPC Coefficients

The a32_QL7[] coefficients are too large to fit in a 16-bit val ue,
whi ch significantly increases the cost of applying this filter in

fi xed-poi nt decoders. Reducing themto QL2 precision doesn't incur
any significant quality loss, but still does not guarantee they will
fit. silk_NLSF2A() applies up to 10 rounds of bandw dth expansion to
limt the dynam c range of these coefficients. Even floating-point
decoders SHOULD performthese steps, to avoid nismatch.

For each round, the process first finds the index k such that
abs(a32_QL7[k]) is largest, breaking ties by choosing the | owest

val ue of k. Then, it conputes the corresponding QL2 precision val ue,
maxabs_ Ql2, subject to an upper bound to avoid overflow in subsequent
conput ati ons:

maxabs_Ql2 = mi n((nmaxabs_Ql7 + 16) >> 5, 163838)

If this is larger than 32767, the procedure derives the chirp factor
sc_Ql6[0], to use in the bandw dth expansi on as

(maxabs_Ql2 - 32767) << 14

SC_QI6[0] = 65470 - ------mmmm e
(maxabs_Q12 * (k+1)) >> 2

Valin, et al. St andards Track [ Page 70]



RFC 6716 Interactive Audi o Codec Sept enber 2012

where the division here is integer division. This is an

approxi mati on of the chirp factor needed to reduce the target
coefficient to 32767, though it is both |l ess than 0.999 and, for

k > 0 when nmaxabs_Ql2 is nuch greater than 32767, still slightly too
| arge. The upper bound on nmaxabs_Ql2, 163838, was chosen because it
is equal to ((2**31 - 1) >> 14) + 32767, i.e., the largest val ue of
maxabs Q12 that would not overflow the nunerator in the equation
above when stored in a signed 32-bit integer.

si | k_bwexpander _32() (bwexpander_32.c) perforns the bandw dth
expansi on (again, only when maxabs_Ql2 is greater than 32767) using
the follow ng recurrence:

a32_QL7[k] = (a32_QL7[k]*sc_QL6[k]) >> 16

sc_QL6[ k+1]

(sc_QLB[ 0] *sc_QL6[ k] + 32768) >> 16

The first multiply nmay require up to 48 bits of precision in the
result to avoid overflow The second multiply nust be unsigned to
avoid overflow with only 32 bits of precision. The reference

i mpl enentation uses a slightly nore conplex formul ation that avoids
the 32-bit overflow using signed multiplication, but is otherw se
equi val ent .

After 10 rounds of bandw dth expansion are perfornmed, they are sinply
saturated to 16 bits:

a32_QL7[k] = clanp(-32768, (a32_QL7[k] + 16) >> 5, 32767) << 5

Because this perforns the actual saturation in the QL2 domain, but
converts the coefficients back to the QL7 donmain for the purposes of
prediction gain limting, this step nust be performed after the 10th
round of bandwi dth expansi on, regardl ess of whether or not the QL2
version of any coefficient still overflows a 16-bit integer. This
saturation is not performed if maxabs_Ql2 drops to 32767 or |ess
prior to the 10th round.

4.2.7.5.8. Linmting the Prediction Gain of the LPC Filter

The prediction gain of an LPC synthesis filter is the square root of
the out put energy when the filter is excited by a unit-energy

i mpul se. Even if the QL2 coefficients would fit, the resulting
filter may still have a significant gain (especially for voiced
sounds), making the filter unstable. silk_NLSF2A() applies up to 16
addi ti onal rounds of bandwi dth expansion to linmt the prediction
gain. Instead of controlling the anpbunt of bandw dth expansi on using
the prediction gain itself (which may diverge to infinity for an
unstable filter), silk NLSF2A() uses silk _LPC inverse pred gain_ QA()

Valin, et al. St andards Track [ Page 71]



RFC 6716 Interactive Audi o Codec Sept enber 2012

(LPC.inv_pred gain.c) to conpute the reflection coefficients
associated with the filter. The filter is stable if and only if the
magni t ude of these coefficients is sufficiently I ess than one. The
reflection coefficients, rc[k], can be conputed using a sinple

Levi nson recurrence, initialized with the LPC coefficients a[d_LPC
1][n] = a[n], and then updated via

rc[k] = -a[k][k] .

a[k][n] - a[k][k-n-1]*rc[K]
a[k-1][n] = ----------"“""------- -

1 - rcf[K]

However, silk_LPC inverse_pred_gain_QA() approxinmtes this using
fixed-point arithmetic to guarantee reproduci ble results across
platforns and inplenentations. Since small changes in the
coefficients can nake a stable filter unstable, it takes the real QL2
coefficients that will be used during reconstruction as input. Thus,
| et

a32_Ql2[n] = (a32_QL7[n] + 16) >> 5

be the Q12 version of the LPC coefficients that will eventually be
used. As a sinple initial check, the decoder conmputes the DC
response as

a32_Q12[ n]

and if DC resp > 4096, the filter is unstable.

I ncreasing the precision of these QL2 coefficients to Q4 for

i nternedi ate conputations allows nore accurate conputation of the
reflection coefficients, so the decoder initializes the recurrence
Vi a

i nv_gai n_QB0[ d_LPC] 1 << 30

a32_@4[d_LPC-1][n] a32_Ql2[n] << 12

Valin, et al. St andards Track [ Page 72]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Then, for each k fromd LPC-1 down to O, if

abs(a32_@4[k][k]) > 16773022, the filter is unstable and the
recurrence stops. The constant 16773022 here is approxi mately
0.99975 in 4. (Oherwi se, the inverse of the prediction gain,
inv_gain_Q30[k], is updated via

rc_@B1[ K]
di v_QB0[ k]
i nv_gai n_Q30[ k]

-a32_Q@4[ K] [K] << 7

(1<<30) - (rc_QB1[k]*rc_QB1[k] >> 32)

(inv_gain_QBO[ k+1] *di v_QBO[ k] >> 32) << 2

and if inv_gain BO[k] < 107374, the filter is unstable and the
recurrence stops. The constant 107374 here is approxinmately 1/10000
in @BO0. |If neither of these checks deternine that the filter is
unstable and k > 0, row k-1 of a32_Q4 is conputed fromrow k as

b1[ k] = ilog(div_@BO[K])
b2[ k] = bl[k] - 16
(1<<29) - 1
inv_Q2[K] = ------------ieee oo
div_@BO[ k] >> (b2[k]+1)
err_Q9[ k] = (1<<29)
- ((div_@BO[ k] <<(15-b2[k]))*inv_Qb2[ k] >> 16)
gain_Qb1[ k] = ((inv_Q2[k] << 16)

+ (err_Q9[k]*inv_Qb2[k] >> 13))

num Q4[ k- 1] [ n]

a32_@4[ k][ n]
- ((a32_@@4[k][k-n-1]*rc_@1[ k] + (1<<30)) >> 31)

(num Q4[ k-1] [ n] *gai n_Qp1[ K]
+ (1<<(bl[Kk]-1))) >> bil[k]

a32_Q4[ k-1][n]

where 0 <= n < k. In the above, rc_@1l[k] are the reflection
coefficients. div_@@BO[K] is the denoninator for each iteration, and
gain_Q1[K] is its multiplicative inverse (with bl[k] fractiona

bits, where bl[k] ranges from20 to 31). inv_Q2[k], which ranges
from 16384 to 32767, is a | ow precision version of that inverse (with
b2[ k] fractional bits). err_Q@9[k] is the residual error, ranging
from-32763 to 32392, which is used to inprove the accuracy. The
values t_@4[k-1][n] for each n are the nunerators for the next row
of coefficients in the recursion, and a32_Q4[k-1][n] is the fina
version of that row Every multiply in this procedure except the one
used to conpute gain_Ql[k] requires nore than 32 bits of precision

Valin, et al. St andards Track [ Page 73]



RFC 6716 Interactive Audi o Codec Sept enber 2012

but otherwise all internediate results fit in 32 bits or less. In
practice, because each row only depends on the next one, an
i mpl enent ati on does not need to store themall

If abs(a32_@4[k][K]) <= 16773022 and inv_gai n_@BO[ k] >= 107374 for
0 <= k < d LPC, then the filter is considered stable. However, the
probl em of determining stability is ill-conditioned when the filter
contains several reflection coefficients whose magnitude is very
close to one. This fixed-point algorithmis not mathenmatically
guaranteed to correctly classify filters as stable or unstable in
this case, though it does very well in practice.

Onround i, 0 <=1i <16, if the filter passes these stability checks,
then this procedure stops, and the final LPC coefficients to use for
reconstruction in Section 4.2.7.9.2 are

a_QI2[k] = (a32_QL7[k] + 16) >> 5

O herwi se, a round of bandw dth expansion is applied using the same
procedure as in Section 4.2.7.5.7, with

sc_QL6[ 0] = 65536 - (2<<i)

During round 15, sc_Ql6[0] becones 0 in the above equation, so
a QL2[Kk] is set to O for all k, guaranteeing a stable filter

4.2.7.6. Long-Term Prediction (LTP) Paraneters

After the normalized LSF indices and, for 20 ns frames, the LSF

i nterpol ation index, voiced franes (see Section 4.2.7.3) include
additional LTP paraneters. There is one prinmary |lag index for each
SILK franme, but this is refined to produce a separate |ag index per
subfrane using a vector quantizer. Each subframe also gets its own
predi ction gain coefficient.

4.2.7.6.1. Pitch Lags
The primary lag index is coded either relative to the primary |ag of
the prior frane in the sane channel or as an absol ute index.

Absolute coding is used if and only if

o0 This is the first SILK frame of its type (LBRR or regular) for
this channel in the current Qpus frane,

0 The previous SILK frame of the same type (LBRR or regular) for
this channel in the same Qpus frame was not coded, or

Valin, et al. St andards Track [ Page 74]



RFC 6716 Interactive Audi o Codec Sept enber 2012

0o That previous SILK frane was coded, but was not voiced (see
Section 4.2.7.3).

Wth absolute coding, the primary pitch lag may range from 2 ns
(inclusive) up to 18 ms (exclusive), corresponding to pitches from
500 Hz down to 55.6 Hz, respectively. It is conprised of a high part
and a | ow part, where the decoder first reads the high part using the
32-entry codebook in Table 29 and then the |ow part using the
codebook corresponding to the current audi o bandwi dth from Tabl e 30.
The final primary pitch lag is then

lag = lag_high*lag scale + lag low + lag mn
where lag_high is the high part, lag_lowis the |low part, and

lag_scale and lag_nin are the values fromthe "Scal e" and "M ni nmum
Lag" colums of Table 30, respectively.

| {3, 3, 6, 11, 21, 30, 32, 19, 11, 10, 12, 13, 13, 12, 11, 9, 8, |
| 7,6, 4, 2, 2, 2,1, 1, 1, 1, 1, 1, 1, 1, 1}/256 |

Tabl e 29: PDF for High Part of Primary Pitch Lag

I I o - Fommemeaa Fommemeaa +
| Audio | PDF | Scale | Mnimm | Maximum |
| Bandwidth | | | Lag | Lag |
B S o e e e e e e e e oo - o F - Fomm e - Fomm e - +
| NB | {64, 64, 64, 64}/256 | 4 | 16 | 144 |
| | | | | |
| MB | {43, 42, 43, 43, 42, | 6 | 24 | 216 |
I I 43}/ 256 I I I I
| WB | {32, 32, 32, 32, 32, | 8 | 32 | 288 |
| | 32, 32, 32}/256 | | | |
I S Fommanan Fommemeena Fommemeena +

Tabl e 30: PDF for Low Part of Primary Pitch Lag

Al'l franes that do not use absolute coding for the prinmary |ag index
use relative coding instead. The decoder reads a single delta val ue
using the 21-entry PDF in Table 31. |If the resulting value is zero,
it falls back to the absol ute coding procedure fromthe prior
paragraph. OQherwise, the final primary pitch lag is then

lag = previous_lag + (delta | ag_index - 9)

Valin, et al. St andards Track [ Page 75]



RFC 6716 Interactive Audi o Codec Sept enber 2012

where previous lag is the primary pitch lag fromthe nost recent
frane in the sanme channel and delta lag index is the val ue just
decoded. This allows a per-frame change in the pitch lag of -8 to
+11 sanples. The decoder does no clanping at this point, so this

val ue can fall outside the range of 2 ms to 18 ns, and the decoder
nmust use this uncl anped val ue when using relative coding in the next
SILK frame (if any). However, because an Qpus frane can use relative
coding for at nobst two consecutive SILK franmes, integer overflow
shoul d not be an issue.

o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - +

| PDF |

o o m o e o e e e e e e e eeoe oo +
{46, 2, 2, 3, 4, 6, 10, 15, 26, 38, 30, 22, 15, 10, 7, 6, 4, 4,

| 2, 2, 2}/256 |

o m e e e e e e e e e e e e e e e e e e e e e e e e e e +

Table 31: PDF for Primary Pitch Lag Change

After the primary pitch lag, a "pitch contour", stored as a single
entry fromone of four small VQ codebooks, gives |lag offsets for each
subframe in the current SILK frame. The codebook index is decoded
usi ng one of the PDFs in Table 32 depending on the current frane size
and audi o bandwi dth. Tables 33 through 36 give the corresponding
offsets to apply to the primary pitch lag for each subfrane given the
decoded codebook i ndex.

S Fomm e o - S o m e m e e e e e e e e e e e e emeao - +
| Audio | SILK | Codebook | PDF |
| Bandwidth | Frame | Size | |
| | Size | | |
R E R [ T o m e e e e e e e e e eme s +
| NB | 10 ms | 3 | {143, 50, 63}/256 |
| | | | |
| NB | 20 ms | 11 | {68, 12, 21, 17, 19, 22, 30, 24,

| | | | 17, 16, 10}/256 |
| | | | |
| MBor WB | 10 ns | 12 | {91, 46, 39, 19, 14, 12, 8, 7, 6,

| | | | 5, 5, 4}/256 |
| | | | |
| MBor WB | 20 ns | 34 | {33, 22, 18, 16, 15, 14, 14, 13,

| | | | 13, 10, 9, 9, 8, 6, 6, 6, 5, 4,

| | | | 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2,

| | | | 2, 1, 1, 1, 1}/256 |
R E R [ T o m e e e e e e e e e ee s +

Tabl e 32: PDFs for Subframe Pitch Contour

Valin, et al. St andards Track [ Page 76]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Fom e e oo +
| I'ndex | Subfrane O fsets |
Fom oo e o e oo +
| O | 0 0]
| | |
| 1 | 1 0|
| | |
| 2 | 0 1]
Fom oo e o e oo +

Tabl e 33: Codebook Vectors for Subframe Pitch Contour:
NB, 10 ns Franes

Fomm e o e a oo +
| I'ndex | Subfrane Offsets |
S e +
| 0 | 0 0 0 O]
| | |
| 1 I 2 1 0-1|
| | |
| 2 | -1 0 1 2|
| | |
| 3 | -1 0 0 1]
| | |
| 4 | -1 0 0 0]
| | |
| 5 | 0 0 0 1]
| | |
| 6 | 0 0 1 1|
| | |
| 7 | 1 1 0 0]
| | |
| 8 | 1 0 0 0]
| | |
| 9 | 0 0 0-1|
| | |
| 10 | 10 0-1|
Fomm e o e a oo +

Tabl e 34: Codebook Vectors for Subframe Pitch Contour:
NB, 20 ns Franes

Valin, et al. St andards Track [ Page 77]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Fom e e oo +
| I'ndex | Subfrane O fsets |
Fom oo e o e oo +
| O | 0 0]
| | |
| 1 | 0 1|
| | |
| 2 | 1 0]
| | |
| 3 | -1 1]
| | |
| 4 | 1-1]
| | |
| 5 | -1 2
| | |
| 6 | 2 -1
| | |
| 7 | -2 2|
| | |
| 8 | 2 -2
| | |
| 9 | -2 3|
| | |
| 10 | 3 -2
| | |
| 11 | -3 3]
Fom oo e o e oo +

Tabl e 35: Codebook Vectors for Subframe Pitch Contour: M or WB,
10 s Franes

Fomm e o e a oo +
| I'ndex | Subfrane Offsets |
S e +
| O | 0 0 0 0]
| | |
| 1 | 0 0 1 1|
| | |
| 2 | 1 1 0 0]
| | |
| 3 | -1 0 0 0]
| | |
| 4 | 0 0 0 1|
| | |
| 5 | 1 0 0 0]
| | |
| 6 | -1 0 0 1|
| | |

Valin, et al. St andards Track [ Page 78]



Sept enber 2012

Interactive Audi o Codec

RFC 6716

— N i N i N o™ N ™ N N < < o™ Lo o™ < © < © Lo Lo [ce} ©

1 1 1 1 1 1 1 1 1 1 1 1

o i o - o o - i i o o N - i N - i N - N N - o™ N

1 1 1 1 1 1 1

o o o - i o o i i o i i - i i N i i N N N N N N
1 1 1 1 1 1 1 1 1

o i i N N N N N o™ ™ < o™ < < < Lo Lo © Lo © N~ ©
1 1 1 1 1 1 1 1 1 1

[ Page 79]

St andards Track

et al.

Val i n,



RFC 6716 Interactive Audi o Codec Sept enber 2012

| 31 | 5 2 -2 -5 |
| | |
| 32 | 8 3-2-7|
| | |
| 33 | -9 -3 3 9|
e oo - o e e oo +

Tabl e 36: Codebook Vectors for Subframe Pitch Contour: MB or VB,
20 ns Franes

The final pitch lag for each subfranme is assenbled in

sil k_decode pitch() (decode pitch.c). Let lag be the prinmary pitch
lag for the current SILK frane, contour_index be index of the VQ
codebook, and | ag_cb[contour index][k] be the corresponding entry of
t he codebook fromthe appropriate table given above for the k’'th
subfranme. Then the final pitch lag for that subfrane is

pitch lags[k] = clanp(lag_mn, lag + |l ag_cb[contour _index][Kk],
| ag_max)

where lag_mn and lag_max are the values fromthe "M ni nrum Lag" and
"Maxi mum Lag" col ums of Tabl e 30, respectively.

4,2.7.6.2. LTP Filter Coefficients

SILK uses a separate 5-tap pitch filter for each subfranme, selected
fromone of three codebooks. The three codebooks each represent
different rate-distortion trade-offs, with average rates of

1. 61 bits/subframe, 3.68 bits/subfrane, and 4.85 bits/subfrane,
respectively.

The inmportance of the filter coefficients generally depends on two
factors: the periodicity of the signal and rel ative energy between
the current subframe and the signal fromone period earlier. Geater
periodicity and decaying energy both lead to nore inportant filter
coefficients. Thus, they should be coded with | ower distortion and
hi gher rate. These properties are relatively stable over the
duration of a single SILK frame. Hence, all of the subfranes in a
SI LK frame choose their filter fromthe sane codebook. This is
signaled with an explicitly-coded "periodicity index". This

i medi ately follows the subfrane pitch | ags, and is coded using the
3-entry PDF from Tabl e 37.

Valin, et al. St andards Track [ Page 80]



RFC 6716 Interactive Audi o Codec Sept enber 2012

oo +
| PDF |
oo +
| {77, 80, 99}/256

oo +

Tabl e 37: Periodicity |Index PDF

The indices of the filters for each subframe follow. They are al
coded using the PDF from Tabl e 38 corresponding to the periodicity

i ndex. Tables 39 through 41 contain the corresponding filter taps as
signed Q7 integers.

S [ T oo e e e e e e e e e e e e e e e e e e e eee o +
| Periodicity | Codebook | PDF |
| I ndex | Si ze |

B S Fom e e - o e e e e e e e e e e e e e e e e e e e e +
| O | 8 | {185, 15, 13, 13, 9, 9, 6, 6}/256 |
| | | |
| 1 | 16 | {57, 34, 21, 20, 15, 13, 12, 13, 10, 10,

| | | 9, 10, 9, 8, 7, 8}/256 |
| | | |
| 2 | 32 | {15, 16, 14, 12, 12, 12, 11, 11, 11, 10,

| | | 9, 9, 9, 9, 8 8, 8 8, 7, 7, 6, 6, 5,

| | | 4, 5 4, 4, 4, 3, 4, 3, 2}/256
S [ T oo e e e e e e e e e e e e e e e e e e e eee o +

Table 38: LTP Filter PDFs

Valin, et al. St andards Track [ Page 81]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Fommnnan O +
| Index | Filter Taps (Q7) |
o - S +
| O | 4 6 24 7 5
I I I
| 1 | 0O 0 2 o0 O
I I I
| 2 | 12 28 41 13 -4
I I I
| 3 | -9 15 42 25 14
I I I
| 4 | 1 -2 62 41 -9
I I I
| 5 | -10 37 65 -4 3
I I I
| 6 | -6 4 66 7 -8
I I I
| 7 | 16 14 38 -3 33
N S +

Tabl e 39: Codebook Vectors for LTP Filter, Periodicity Index O

Valin, et al. St andards Track [ Page 82]



RFC 6716 Interactive Audi o Codec Sept enber 2012

Fommnnan O +
| Index | Filter Taps (Q7) |
o - S +
| O | 13 22 39 23 12
I I I
| 1 | -1 36 64 27 -6
I I I
| 2 | -7 10 55 43 17
I I I
| 3 | 1 1 8 1 1
I I I
| 4 | 6 -11 74 53 -9 |
I I I
| 5 | -12 55 76 -12 8
I I I
| 6 | -3 3 93 27 -4
I I I
| 7 | 26 39 59 3 -8
I I I
| 8 | 2 0 77 11 9
I I I
| 9 | -8 22 44 -6 7
I I I
| 10 | 40 9 26 3 9
I I I
| 11 | -7 20101 -7 4
I I I
| 12 | 3 -8 42 26 O
I I I
| 13 | -15 33 68 2 23
I I I
| 14 | -2 55 46 -2 15
I I I
| 15 | 3 -1 21 16 41
Fomm - e e e e e e e e o +

Tabl e 40: Codebook Vectors for LTP Filter, Periodicity Index 1

o - e +
| I'ndex | Filter Taps (Q7) |
Fomm - e e e e e e e e o +
| O | -6 27 61 39 5

I I I
| 1 | -11 42 88 4 1

I I I
| 2 | -2 60 65 6 -4
I I I
| 3 | -1 -5 73 56 1

Valin, et al. St andards Track [ Page 83]



RFC 6716 Interactive Audi o Codec Sept enber 2012

| 4 | -9 19 94 29 -9
I 5 I 0 12 99 6 4
I 6 I 8 -19 102 46 -13
I 7 I 3 2 13 3 2
I 8 I 9 -21 84 72 -18
I 9 I -11 46 104 -22 8
I 10 I 18 38 48 23 0
I 11 I -16 70 83 -21 11
I 12 I 5-11 117 22 -8
I 13 I -6 23 117 -12 3
I 14 I 3 -8 95 28 4
I 15 I -10 15 77 60 -15
I 16 I -1 4124 2 -4
I 17 I 3 38 84 24 -25
I 18 I 2 13 42 13 31
I 19 I 21 -4 56 46 -1
I 20 I -1 35 79 -13 19
I 21 I -7 65 88 -9 -14
I 22 I 20 4 81 49 -29
I 23 I 20 0 75 3 -17
I 24 I 5 -9 44 92 -8
I 25 I 1 -3 22 69 31
I 26 I -6 95 41 -12 5
i 27 i 39 67 16 -4 1

Valin, et al. St andards Track [ Page 84]



RFC 6716 Interactive Audi o Codec Sept enber 2012

| 28 | 0 -6 120 55 -36 |
I 29 I -13 44 122 4-24I
I 30 I 81 5 11 3 7 I
I 31 I 2 0 9 10 88 I
Fome oo o e +

Tabl e 41: Codebook Vectors for LTP Filter, Periodicity Index 2
4,.2.7.6.3. LTP Scaling Paraneter

An LTP scaling paraneter appears after the LTP filter coefficients if
and only if

o This is a voiced frame (see Section 4.2.7.3), and
o Either

* This SILK frame corresponds to the first time interval of the
current Qpus frame for its type (LBRR or regular), or

* This is an LBRR franme where the LBRR flags (see Section 4.2.4)
i ndi cate the previous LBRR frane in the sane channel is not
coded.

This allows the encoder to trade off the prediction gain between
packets agai nst the recovery tine after packet loss. Unlike

absol ute-coding for pitch lags, regular SILK franes that are not at
the start of an Qpus frane (i.e., that do not correspond to the first
20 ms time interval in Opus frames of 40 or 60 ns) do not include
this field, even if the prior frane was not voiced, or (in the case
of the side channel) not even coded. After an uncoded frame in the
si de channel, the LTP buffer (see Section 4.2.7.9.1) is cleared to
zero, and is thus in a known state. |n contrast, LBRR franes do
include this field when the prior frane was not coded, since the LTP
buf fer contains the output of the PLC, which is non-normative.

If present, the decoder reads a value using the 3-entry PDF in

Table 42. The three possible values represent Ql4 scale factors of
15565, 12288, and 8192, respectively (corresponding to approxi nately
0.95, 0.75, and 0.5). Franes that do not code the scaling paraneter
use the default factor of 15565 (approximtely 0.95).

Valin, et al. St andards Track [ Page 85]



RFC 6716 Interactive Audi o Codec Sept enber 2012

oo +
| PDF |
e +
| {128, 64, 64}/256 |
o e eea o +

Tabl e 42: PDF for LTP Scaling Paraneter
4.2.7.7. Linear Congruential Generator (LCG Seed

As described in Section 4.2.7.8.6, SILK uses a Linear Congruenti al
CGenerator (LCG to inject pseudorandom noise into the quantized
excitation. To ensure synchronization of this process between the
encoder and decoder, each SILK frane stores a 2-bit seed after the
LTP paraneters (if any). The encoder may consider the choice of seed
during quantization, and the flexibility of this choice lets it
reduce distortion, helping to pay for the bit cost required to signa
it. The decoder reads the seed using the uniform4-entry PDF in
Tabl e 43, yielding a value between 0 and 3, inclusive.

o e ee e e oo +
| PDF |
o e e e oo +
| {64, 64, 64, 64}/ 256

om e e e e e e +

Tabl e 43: PDF for LCG Seed
4.2.7.8. Excitati on

SI LK codes the excitation using a nodified version of the Pyranmd
Vector Quantizer (PVQ codebook [PVQ. The PVQ codebook is designed
for Laplace-distributed values and consists of all suns of K signed,
unit pulses in a vector of dinmension N, where two pul ses at the sane
position are required to have the sane sign. Thus, the codebook

includes all integer codevectors y of dinension N that satisfy
N-1
)“ abs(y[j]) = K
j =0

Unli ke regular PVQ SILK uses a variable-length, rather than fixed-

| ength, encoding. This encoding is better suited to the nore

Gaussi an-like distribution of the coefficient magnitudes and the non-
uniformdistribution of their signs (caused by the quantization

of fset described below). SILK also handl es | arge codebooks by codi ng

Valin, et al. St andards Track [ Page 86]



RFC 6716 Interactive Audi o Codec Sept enber 2012

the | east significant bits (LSBs) of each coefficient directly. This
adds a small coding efficiency |oss, but greatly reduces the
conmputation tine and ROM size required for decoding, as inplenented
in silk_decode_pul ses() (decode_pul ses.c).

SI LK fixes the dinmension of the codebook to N = 16. The excitation
is made up of a nunber of "shell bl ocks", each 16 sanples in size.
Table 44 lists the nunber of shell blocks required for a SILK frane
for each possible audio bandwi dth and frane size. 10 ns MB franes
nom nally contain 120 sanples (10 nms at 12 kHz), which is not a
multiple of 16. This is handled by coding 8 shell blocks (128
sanpl es) and discarding the final 8 sanples of the |ast block. The
decoder contains no special case that prevents an encoder from

pl aci ng pulses in these sanples, and they nust be correctly parsed
fromthe bitstreamif present, but they are otherw se ignored

S S o e e e e e e e e e e e e m o +
| Audio Bandwidth | Frame Size | Nunber of Shell Bl ocks
oo R o e e e e e e e i e oo +
| NB | 10 ms | 5
| | | |
| MB | 10 ms | 8
| | | |
| wWB | 10 ms | 10
| | | |
| NB | 20 ns | 10
| | | |
| MB | 20 s | 15
| | | |
| wWB | 20 s | 20
oo R o e e e e e e e i e oo +

Tabl e 44: Nunber of Shell Bl ocks Per SILK Frane
4.2.7.8.1. Rate Level

The first synbol in the excitation is a "rate level", which is an
index fromO to 8, inclusive, coded using the PDF in Table 45
corresponding to the signal type of the current frane (from

Section 4.2.7.3). The rate level selects the PDF used to decode the
nunber of pulses in the individual shell blocks. 1t does not
directly convey any infornmation about the bitrate or the nunber of

pul ses itself, but nerely changes the probability of the synbols in
Section 4.2.7.8.2. Level O provides a nore efficient encoding at |ow
rates generally, and level 8 provides a nore efficient encoding at
hi gh rates generally, though the nost efficient level for a

Valin, et al. St andards Track [ Page 87]



RFC 6716 Interactive Audi o Codec Sept enber 2012

particular SILK frame may depend on the exact distribution of the
coded synbols. An encoder should, but is not required to, use the
nost efficient rate | evel

| Signal Type | PDF
| I'nactive or Unvoiced | {15, 51, 12, 46, 45, 13, 33, 27, 14}/256

|
| Voi ced | {33, 30, 36, 17, 34, 49, 18, 21, 18}/256 |

Tabl e 45: PDFs for the Rate Leve
4.2.7.8.2. Pulses per Shell Block

The total number of pulses in each of the shell blocks follows the
rate level. The pulse counts for all of the shell blocks are coded
consecutively, before the content of any of the blocks. Each bl ock
may have anywhere fromO to 16 pul ses, inclusive, coded using the 18-
entry PDF in Table 46 corresponding to the rate |level from

Section 4.2.7.8.1. The special value 17 indicates that this block
has one or nore additional LSBs to decode for each coefficient. |If

t he decoder encounters this value, it decodes another value for the
actual pul se count of the block, but uses the PDF corresponding to
the special rate level 9 instead of the normal rate level. This
process repeats until the decoder reads a value less than 17, and it
then sets the nunber of extra LSBs used to the nunber of 17's decoded
for that block. If it reads the value 17 ten tines, then the next
iteration uses the special rate level 10 instead of 9. The
probability of decoding a 17 when using the PDF for rate level 10 is
zero, ensuring that the nunber of LSBs for a block will not exceed
10. The cumul ative distribution for rate level 10 is just a shifted
version of that for 9 and thus does not require any additiona

st or age.

Valin, et al. St andards Track [ Page 88]



RFC 671

4.2.7.8

6

Interactive Audi o Codec Sept enber 2012

{131, 74, 25, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1}/256

{58, 93, 60, 23, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1}/256

{43, 51, 46, 33, 24, 16, 11, 8, 6, 3, 3, 3, 2, 1, 1,
2, 1, 2}/256

{17, 52, 71, 57, 31, 12, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1}/256

{6, 21, 41, 53, 49, 35, 21, 11, 6, 3, 2, 2, 1, 1, 1,
1, 1, 1}/256

{2, 5, 14, 29, 42, 46, 41, 31, 19, 11, 6, 3, 2, 1, 1,
1, 1, 1}/256

{1, 2, 4, 10, 19, 29, 35, 37, 34, 28, 20, 14, 8, 5, 4,
2, 2, 2}/256

{1, 2, 2, 5, 9, 14, 20, 24, 27, 28, 26, 23, 20, 15,
11, 8, 6, 15}/256

{1, 1, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2,
1, 1, 2}/256

{2, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1,

I
|
I
I
I
I
I
|
I
I
I
I
I
|
| {7, 14, 22, 28, 29, 28, 25, 20, 17, 13, 11, 9, 7, 5,
I
I
I
|
I
I
I
I
I
|
I
I
I
|
| 1, 2, 0}/256

I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
4, 4, 3, 10}/256
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

Tabl e 46: PDFs for the Pul se Count

.3. Pulse Location Decoding

The | ocations of the pulses in each shell block follow the pul se

ts, as decoded by silk _shell _decoder() (shell _coder.c). As with
the pul se counts, these |locations are coded for all the shell bl ocks
before any of the remaining information for each bl ock. Unlike many
ot her codecs, SILK places no restriction on the distribution of

coun

Val i n,

et al.

St andards Track [ Page 89]



RFC 6716 Interactive Audi o Codec Sept enber 2012

pul ses within a shell block. Al of the pulses may be placed in a
single location, or each one in a unique location, or anything in
bet ween.

The | ocation of pulses is coded by recursively partitioning each

bl ock into hal ves, and codi ng how many pul ses fall on the left side
of the split. Al renaining pulses nust fall on the right side of
the split. The process then recurses into the left half, and after
that returns, the right half (preorder traversal). The PDF to use is
chosen by the size of the current partition (16, 8, 4, or 2) and the
nunber of pulses in the partition (1 to 16, inclusive). Tables 47
through 50 |ist the PDFs used for each partition size and pul se
count. This process skips partitions w thout any pulses, i.e., where
the initial pulse count from Section 4.2.7.8.2 was zero, or where the
split in the prior level indicated that all of the pulses fell on the
other side. These partitions have nothing to code, so they require
no PDF.

Valin, et al. St andards Track [ Page 90]



RFC 6716 Interactive Audi o Codec Sept enber 2012

T T T e e e +
| Pul se | PDF |
| Count | |
[ - S +
| 1 | {126, 130}/256 |
| | |
| 2 | {56, 142, 58}/256 |
| | |
| 3 | {25, 101, 104, 26}/256 |
| | |
| 4 | {12, 60, 108, 64, 12}/256 |
| | |
| 5 | {7, 35, 84, 87, 37, 6}/256 |
| | |
| 6 | {4, 20, 59, 86, 63, 21, 3}/256 |
| | |
| 7 | {3, 12, 38, 72, 75, 42, 12, 2}/256 |
| | |
| 8 | {2, 8, 25, 54, 73, 59, 27, 7, 1}/256 |
| | |
| 9 | {2, 5, 17, 39, 63, 65, 42, 18, 4, 1}/256 |
| | |
| 10 | {1, 4, 12, 28, 49, 63, 54, 30, 11, 3, 1}/256

| | |
| 11 | {1, 4, 8, 20, 37, 55, 57, 41, 22, 8, 2, 1}/256

| | |
| 12 | {1, 8, 7, 15, 28, 44, 53, 48, 33, 16, 6, 1, 1}/256

| | |
| 13 | {1, 2, 6, 12, 21, 35, 47, 48, 40, 25, 12, 5, 1, |
| | 1}/256

| | |
| 14 | {1, 1, 4, 10, 17, 27, 37, 47, 43, 33, 21, 9, 4, 1, |
| | 1}/256 |
| | |
| 15 | {1, 1, 1, 8, 14, 22, 33, 40, 43, 38, 28, 16, 8, 1, |
| | 1, 1}/256 |
| | |
| 16 | {1, 1, 1, 1, 13, 18, 27, 36, 41, 41, 34, 24, 14, 1,

| | 1, 1, 1}/256 |
[ - S +

Tabl e 47: PDFs for Pulse Count Split, 16 Sanple Partitions

Valin, et al. St andards Track [ Page 91]



RFC 6716 Interactive Audi o Codec Sept enber 2012

R o m o e e e e e e e e e e e e e e e e e e e e e e e e e e eeee o +
| Pul se | PDF |
| Count | |
Fomm e e e o - Fom e e e e e e e e e e e e e e e e e e e e e e e e e e am o +
| 1 | {127, 129}/ 256 |
| | |
| 2 | {53, 149, 54}/256 |
| | |
| 3 | {22, 105, 106, 23}/256 |
| | |
| 4 | {11, 61, 111, 63, 10}/256 |
| | |
| 5 | {6, 35, 86, 88, 36, 5}/256 |
| | |
| 6 | {4, 20, 59, 87, 62, 21, 3}/256 |
| | |
| 7 | {3, 13, 40, 71, 73, 41, 13, 2}/256 |
| | |
| 8 | {3, 9, 27, 53, 70, 56, 28, 9, 1}/256 |
| | |
| 9 | {3, 8, 19, 37, 57, 61, 44, 20, 6, 1}/256 |
| | |
| 10 | {3, 7, 15, 28, 44, 54, 49, 33, 17, 5, 1}/256 |
| | |
| 11 | {1, 7, 13, 22, 34, 46, 48, 38, 28, 14, 4, 1}/256 |
| | |
| 12 | {1, 1, 11, 22, 27, 35, 42, 47, 33, 25, 10, 1, 1}/256

| | |
| 13 | {1, 1, 6, 14, 26, 37, 43, 43, 37, 26, 14, 6, 1, |
| | 1}/256 |
| | |
| 14 | {1, 1, 4, 10, 20