Internet Engineering Task Force (IETF) N. Jenkins

Request for Comments: 8620 Fastmail
Category: Standards Track C. Newman
ISSN: 2070-1721 Oracle

July 2019

The JSON Meta Application Protocol (JMAP)
Abstract
This document specifies a protocol for clients to efficiently query,
fetch, and modify JSON-based data objects, with support for push
notification of changes and fast resynchronisation and for out-of-
band binary data upload/download.
Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF) . It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8620.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Jenkins & Newman Standards Track [Page 1]

RFC 8620

JMAP

Table of Contents

1. Introduction

PR R

OJdFRrRFRPrRPOYOOD WDNDR
o

2. The

w

w w
o IS

w
(X)\I(A)(A)O\Lﬂw»bww[\)l—‘(/)l\)l—‘
o

]

w www
i
o .

4. The
1.

D

5. Standard Methods and Namlng Conventlon

1.

(G0N C, NG, BN INC INC, INE, 6]

[NKe))

2
3
4
5
6.
T,
8
B
1
2
3

o

Notational Conventlons
The Id Data Type

The Int and Uns1gnedInt Data Types

The Date and UTCDate Data Types
JSON as the Data Encoding Format
Terminology

.1. User
.2. Accounts . .
.3. Data Types and Records

The JMAP API Model
Vendor-Specific Extensions
JMAP Session Resource
Example

Service Autodlscovery

tructured Data Exchange

Making an API Request
The Invocation Data Type
The Request Object

.1. Example Request

The Response Object

.1. Example Response

Omitting Arguments
Errors

.1. Request- Level Errors
.2. Method-Level Errors

References to Previous Method Results
Localisation of User-Visible Strings

Security
Concurrency .
Core/echo Method
Example

/get

/changes

/set

/copy

/query

/queryChanges
Examples .
Proxy Con51deratlons

inary Data

Uploading Blnary Data
Downloading Binary Data
Blob/copy

Jenkins & Newman Standards Track

July 2019

OO0 00 JJJJ~Jo o b

oo oo bdbdwwbdDdDdDDNDDDDDDMMNMRFRFRRPRRPRPRPRRERRR
HFOWWOWORFONODOWWWOOWOOWOWTINE O WVWWWOWOWOo 6o o Ul O

[Page 2]

RFC 8620

1.

.2
.2
2

~

O 0O 00 0O O 0O O

O W O
O W WO WOWWOWwoOouhwNhEr

DO DD D

\OkOkOU‘I

10. e

10.2.

ush

JMAP July 2019
P e e e e e e 62
1 The StateChange Object 63
7 1. Example 64
2 PushSubscription 64
7.2.1. PushSubscrlptlon/get 67
7.2.2. PushSubscription/set 68
7.2.3. Example 69
3 Event Source . 71
8. Security Considerations 73
1. Transport Confidentiality 73
2 Authentication Scheme 73
3 Service Autodiscovery 73
4 JSON Parsing 74
5 Denial of Service . .. 74
6 Connection to Unknown Push Server 74
7 Push Encryption 75
8. Traffic Analysis 76
9. IANA Considerations . 76
Assignment of jmap Serv1ce Name . 76
Registration of Well-Known URI Suffix for JMAP 76
Registration of the jmap URN Sub-namespace 77
Creation of "JMAP Capabilities" Registry 77
.1. Preliminary Community Review 77
2. Submit Request to IANA 78
3. Designated Expert Review 78
4. Change Procedures . 78
5. JMAP Capabilities Reglstry Template 79
6. Initial Registration for JMAP Core 79

7. Registration for JMAP Error Placeholder in JMAP
Capabilities Registry c e e e 80
Creation of "JMAP Error Codes" Registry 80
.1. Expert Review 80
.2. JMAP Error Codes Reglstry Template . 81
.3. 1Initial Contents for the JMAP Error Codes Reglstry 81
rences . 86
Normative References 86
Informative References 89
Addresses 90

Authors’

Jenkins & N

ewman Standards Track [Page 3]

RFC 8620 JMAP July 2019

1.

1.

Introduction

The JSON Meta Application Protocol (JMAP) is used for synchronising
data, such as mail, calendars, or contacts, between a client and a
server. It is optimised for mobile and web environments and aims to
provide a consistent interface to different data types.

This specification is for the generic mechanism of data
synchronisation. Further specifications define the data models for
different data types that may be synchronised wvia JMAP.

JMAP is designed to make efficient use of limited network resources.
Multiple API calls may be batched in a single request to the server,
reducing round trips and improving battery life on mobile devices.
Push connections remove the need for polling, and an efficient delta
update mechanism ensures a minimum amount of data is transferred.

JMAP is designed to be horizontally scalable to a very large number
of users. This is facilitated by separate endpoints for users after
login, the separation of binary and structured data, and a data model
for sharing that does not allow data dependencies between accounts.

1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

The underlying format used for this specification is JSON.
Consequently, the terms "object" and "array" as well as the four
primitive types (strings, numbers, booleans, and null) are to be
interpreted as described in Section 1 of [RFC8259]. Unless otherwise
noted, all the property names and values are case sensitive.

Some examples in this document contain "partial" JSON documents used
for illustrative purposes. In these examples, three periods "..."
are used to indicate a portion of the document that has been removed
for compactness.

For compatibility with publishing requirements, line breaks have been
inserted inside long JSON strings, with the following continuation
lines indented. To form the valid JSON example, any line breaks
inside a string must be replaced with a space and any other white
space after the line break removed.

Jenkins & Newman Standards Track [Page 4]

RFC 8620 JMAP July 2019

Unless otherwise specified, examples of API exchanges only show the
methodCalls array of the Request object or the methodResponses array
of the Response object. For compactness, the rest of the Request/
Response object is omitted.

Type signatures are given for all JSON values in this document. The
following conventions are used:

o "*" — The type is undefined (the wvalue could be any type, although
permitted values may be constrained by the context of this wvalue).

o "String" - The JSON string type.

o "Number" - The JSON number type.

o "Boolean" - The JSON boolean type.

o "A[B]" - A JSON object where the keys are all of type "A", and the

values are all of type "B".
o "A[]" - An array of values of type "A".
o "A|B" — The value is either of type "A" or of type "B".

Other types may also be given, with their representation defined
elsewhere in this document.

Object properties may also have a set of attributes defined along
with the type signature. These have the following meanings:

o "server-set" -- Only the server can set the value for this
property. The client MUST NOT send this property when creating a
new object of this type.

o "immutable" -- The value MUST NOT change after the object is
created.
o "default" -- (This is followed by a JSON value). The value that

will be used for this property if it is omitted in an argument or
when creating a new object of this type.

Jenkins & Newman Standards Track [Page 5]

RFC 8620 JMAP July 2019

1.2. The Id Data Type
All record ids are assigned by the server and are immutable.

Where "Id" is given as a data type, it means a "String" of at least 1
and a maximum of 255 octets in size, and it MUST only contain
characters from the "URL and Filename Safe" base64 alphabet, as
defined in Section 5 of [RFC4648], excluding the pad character ("=").
This means the allowed characters are the ASCII alphanumeric
characters ("A-Za-z0-9"), hyphen ("-"), and underscore ("_").

These characters are safe to use in almost any context (e.g.,

filesystems, URIs, and IMAP atoms). For maximum safety, servers

SHOULD also follow defensive allocation strategies to avoid creating

risks where glob completion or data type detection may be present

(e.g., on filesystems or in spreadsheets). In particular, it is wise

to avoid:

o Ids starting with a dash

o Ids starting with digits

o Ids that contain only digits

o Ids that differ only by ASCII case (for example, A vs. a)

o the specific sequence of three characters "NIL" (because this
sequence can be confused with the IMAP protocol expression of the

null value)

A good solution to these issues is to prefix every id with a single
alphabetical character.

1.3. The Int and UnsignedInt Data Types
Where "Int" is given as a data type, it means an integer in the range
—-2753+1 <= value <= 2753-1, the safe range for integers stored in a

floating-point double, represented as a JSON "Number".

Where "UnsignedInt" is given as a data type, it means an "Int" where
the value MUST be in the range 0 <= value <= 2753-1.

Jenkins & Newman Standards Track [Page 6]

RFC 8620 JMAP July 2019

1.4. The Date and UTCDate Data Types

Where "Date" is given as a type, it means a string in "date-time"
format [RFC3339]. To ensure a normalised form, the "time-secfrac"
MUST always be omitted if zero, and any letters in the string (e.g.,
"T" and "Z") MUST be uppercase. For example,
"2014-10-30T14:12:00+08:00".

Where "UTCDate" is given as a type, it means a "Date" where the
"time-offset" component MUST be "Z" (i.e., it must be in UTC time).
For example, "2014-10-30T06:12:00z".

1.5. JSON as the Data Encoding Format

JSON is a text-based data interchange format as specified in
[REFC8259]. The Internet JSON (I-JSON) format defined in [RFC7493] is
a strict subset of this, adding restrictions to avoid potentially
confusing scenarios (for example, it mandates that an object MUST NOT
have two members with the same name).

All data sent from the client to the server or from the server to the
client (except binary file upload/download) MUST be valid I-JSON
according to the RFC and is therefore case sensitive and encoded in
UTF-8 [RFC3629].

1.6. Terminology
1.6.1. User

A user is a person accessing data via JMAP. A user has a set of
permissions determining the data that they can see.

1.6.2. Accounts

An account is a collection of data. A single account may contain an
arbitrary set of data types, for example, a collection of mail,
contacts, and calendars. Most JMAP methods take a mandatory
"accountId" argument that specifies on which account the operations
are to take place.

An account is not the same as a user, although it is common for a
primary account to directly belong to the user. For example, you may
have an account that contains data for a group or business, to which
multiple users have access.

Jenkins & Newman Standards Track [Page 7]

RFC 8620 JMAP July 2019

A single set of credentials may provide access to multiple accounts,
for example, if another user is sharing their work calendar with the
authenticated user or if there is a group mailbox for a support-desk
inbox.

In the event of a severe internal error, a server may have to
reallocate ids or do something else that violates standard JMAP data

constraints for an account. In this situation, the data on the
server is no longer compatible with cached data the client may have
from before. The server MUST treat this as though the account has

been deleted and then recreated with a new account id. Clients will
then be forced to throw away any data with the old account id and
refetch all data from scratch.

1.6.3. Data Types and Records

JMAP provides a uniform interface for creating, retrieving, updating,
and deleting various types of objects. A "data type" is a collection
of named, typed properties, Jjust like the schema for a database
table. Each instance of a data type is called a "record".

The id of a record is immutable and assigned by the server. The id
MUST be unique among all records of the *same type* within the *same
account*. Ids may clash across accounts or for two records of
different types within the same account.

1.7. The JMAP API Model

JMAP uses HTTP [RFC7230] to expose API, push, upload, and download
resources. All HTTP requests MUST use the "https://" scheme (HTTP
over TLS [RFC2818]). All HTTP requests MUST be authenticated.

An authenticated client can fetch the user’s Session object with
details about the data and capabilities the server can provide as
shown in Section 2. The client may then exchange data with the
server in the following ways:

1. The client may make an API request to the server to get or set
structured data. This request consists of an ordered series of
method calls. These are processed by the server, which then
returns an ordered series of responses. This is described in
Sections 3, 4, and 5.

2. The client may download or upload binary files from/to the
server. This is detailed in Section 6.

3. The client may connect to a push channel on the server, to be
notified when data has changed. This is explained in Section 7.

Jenkins & Newman Standards Track [Page 8]

RFC 8620 JMAP July 2019

1.8. Vendor-Specific Extensions

Individual services will have custom features they wish to expose
over JMAP. This may take the form of extra data types and/or methods
not in the spec, extra arguments to JMAP methods, or extra properties
on existing data types (which may also appear in arguments to methods
that take property names).

The server can advertise custom extensions it supports by including
the identifiers in the capabilities object. Identifiers for vendor
extensions MUST be a URL belonging to a domain owned by the vendor,
to avoid conflict. The URL SHOULD resolve to documentation for the
changes the extension makes.

The client MUST opt in to use an extension by passing the appropriate
capability identifier in the "using" array of the Request object, as
described in Section 3.3. The server MUST only follow the
specifications that are opted into and behave as though it does not
implement anything else when processing a request. This is to ensure
compatibility with clients that don’t know about a specific custom
extension and for compatibility with future versions of JMAP.

2. The JMAP Session Resource
You need two things to connect to a JMAP server:
1. The URL for the JMAP Session resource. This may be requested
directly from the user or discovered automatically based on a

username domain (see Section 2.2 below).

2. Credentials to authenticate with. How to obtain credentials is
out of scope for this document.

A successful authenticated GET request to the JMAP Session resource
MUST return a JSON-encoded *Session* object, giving details about the
data and capabilities the server can provide to the client given
those credentials. It has the following properties:

o capabilities: "String[Object]"
An object specifying the capabilities of this server. Each key is
a URI for a capability supported by the server. The value for
each of these keys is an object with further information about the

server’s capabilities in relation to that capability.

The client MUST ignore any properties it does not understand.

Jenkins & Newman Standards Track [Page 9]

RFC 8620

JMAP July 2019

The capabilities object MUST include a property called
"urn:ietf:params:jmap:core". The value of this property is an
object that MUST contain the following information on server
capabilities (suggested minimum values for limits are supplied
that allow clients to make efficient use of the network):

*

maxSizeUpload: "UnsignedInt"

The maximum file size, in octets, that the server will accept
for a single file upload (for any purpose). Suggested minimum:
50,000, 000.

maxConcurrentUpload: "UnsignedInt"

The maximum number of concurrent requests the server will
accept to the upload endpoint. Suggested minimum: 4.

maxSizeRequest: "UnsignedInt"

The maximum size, in octets, that the server will accept for a

single request to the API endpoint. Suggested minimum:
10,000,000.
maxConcurrentRequests: "UnsignedInt"

The maximum number of concurrent requests the server will
accept to the API endpoint. Suggested minimum: 4.

maxCallsInRequest: "UnsignedInt"

The maximum number of method calls the server will accept in a
single request to the API endpoint. Suggested minimum: 16.

maxObjectsInGet: "UnsignedInt"

The maximum number of objects that the client may request in a
single /get type method call. Suggested minimum: 500.

maxObjectsInSet: "UnsignedInt"

The maximum number of objects the client may send to create,
update, or destroy in a single /set type method call. This is
the combined total, e.g., if the maximum is 10, you could not
create 7 objects and destroy 6, as this would be 13 actions,
which exceeds the limit. Suggested minimum: 500.

Jenkins & Newman Standards Track [Page 10]

RFC 8620 JMAP July 2019

* collationAlgorithms: "String[]"

A list of identifiers for algorithms registered in the
collation registry, as defined in [RFC4790], that the server
supports for sorting when querying records.

Specifications for future capabilities will define their own
properties on the capabilities object.

Servers MAY advertise vendor-specific JMAP extensions, as
described in Section 1.8. To avoid conflict, an identifier for a
vendor—-specific extension MUST be a URL with a domain owned by the
vendor. Clients MUST opt in to any capability it wishes to use
(see Section 3.3).

o accounts: "Id[Account]"

A map of an account id to an Account object for each account (see

Section 1.6.2) the user has access to. An *Account* object has

the following properties:

* name: "String"
A user-friendly string to show when presenting content from
this account, e.g., the email address representing the owner of
the account.

* isPersonal: "Boolean"
This is true if the account belongs to the authenticated user
rather than a group account or a personal account of another
user that has been shared with them.

* isReadOnly: "Boolean"
This is true if the entire account is read-only.

* accountCapabilities: "String[Object]"
The set of capability URIs for the methods supported in this
account. Each key is a URI for a capability that has methods
you can use with this account. The value for each of these
keys i1s an object with further information about the account’s
permissions and restrictions with respect to this capability,

as defined in the capability’s specification.

The client MUST ignore any properties it does not understand.

Jenkins & Newman Standards Track [Page 11]

RFC 8620 JMAP July 2019

The server advertises the full list of capabilities it supports
in the capabilities object, as defined above. If the
capability defines new methods, the server MUST include it in
the accountCapabilities object if the user may use those
methods with this account. It MUST NOT include it in the
accountCapabilities object if the user cannot use those methods
with this account.

For example, you may have access to your own account with mail,
calendars, and contacts data and also a shared account that
only has contacts data (a business address book, for example).
In this case, the accountCapabilities property on the first
account would include something like
"urn:ietf:params:jmap:mail", "urn:ietf:params:jmap:calendars",
and "urn:ietf:params:jmap:contacts”, while the second account
would just have the last of these.

Attempts to use the methods defined in a capability with one of
the accounts that does not support that capability are rejected
with an "accountNotSupportedByMethod" error (see "Method-Level
Errors", Section 3.6.2).

o primaryAccounts: "String[Id]"

A map of capability URIs (as found in accountCapabilities) to the
account id that is considered to be the user’s main or default
account for data pertaining to that capability. If no account
being returned belongs to the user, or in any other way there is
no appropriate way to determine a default account, there MAY be no
entry for a particular URI, even though that capability is
supported by the server (and in the capabilities obiject).
"urn:ietf:params:jmap:core" SHOULD NOT be present.

o username: "String"

The username associated with the given credentials, or the empty
string if none.

o apiUrl: "String"

The URL to use for JMAP API requests.

Jenkins & Newman Standards Track [Page 12]

RFC 8620 JMAP July 2019

o downloadUrl: "String"

The URL endpoint to use when downloading files, in URI Template
(level 1) format [RFC6570]. The URL MUST contain variables called
"accountId", "blobId", "type", and "name". The use of these
variables is described in Section 6.2. Due to potential encoding
issues with slashes in content types, it is RECOMMENDED to put the
"type" variable in the query section of the URL.

o uploadUrl: "String"

The URL endpoint to use when uploading files, in URI Template
(level 1) format [RFC6570]. The URL MUST contain a variable

called "accountId". The use of this variable is described in
Section 6.1.

o eventSourceUrl: "String"

The URL to connect to for push events, as described in

Section 7.3, in URI Template (level 1) format [RFC6570]. The URL
MUST contain variables called "types", "closeafter", and "ping".
The use of these variables is described in Section 7.3.

o state: "String"

A (preferably short) string representing the state of this object
on the server. If the value of any other property on the Session
object changes, this string will change. The current value is
also returned on the API Response object (see Section 3.4),
allowing clients to quickly determine if the session information
has changed (e.g., an account has been added or removed), so they
need to refetch the object.

To ensure future compatibility, other properties MAY be included on
the Session object. Clients MUST ignore any properties they are not
expecting.

Implementors must take care to avoid inappropriate caching of the
Session object at the HTTP layer. Since the client should only
refetch when it detects there is a change (via the sessionState
property of an API response), it is RECOMMENDED to disable HTTP
caching altogether, for example, by setting "Cache-Control: no-cache,
no-store, must-revalidate" on the response.

Jenkins & Newman Standards Track [Page 13]

RFC 8620 JMAP July 2019

2.1. Example

In the following example Session object, the user has access to their
own mail and contacts via JMAP, as well as read-only access to shared
mail from another user. The server is advertising a custom
"https://example.com/apis/foobar" capability.

{

"capabilities": {
"urn:ietf:params: jmap:core": {
"maxSizeUpload": 50000000,
"maxConcurrentUpload": 8,

"maxSizeRequest": 10000000,
"maxConcurrentRequest": 8,
"maxCallsInRequest": 32,
"maxObjectsInGet": 256,
"maxObjectsInSet": 128,
"collationAlgorithms": [
"i,ascii-numeric",
"i;ascii-casemap",
"i;unicode-casemap"
1
by
"urn:ietf:params:jmap:mail": {}
"urn:ietf:params: jmap:contacts": {1},
"https://example.com/apis/foobar": ({
"maxFoosFinangled": 42
}
by

"accounts": {
"A13824": {
"name": "john@example.com",
"isPersonal": true,
"isReadOnly": false,
"accountCapabilities": {
"urn:ietf:params: jmap:mail": {

"maxMailboxesPerEmail": null,
"maxMailboxDepth": 10,

b
"urn:ietf:params: jmap:contacts": {

}

s

Jenkins & Newman Standards Track [Page 14]

RFC 8620 JMAP July 2019

"A9T7813": {

"name": "jane@Rexample.com",

"isPersonal": false,

"isReadOnly": true,

"accountCapabilities": {

"urn:ietf:params: jmap:mail": {

"maxMailboxesPerEmail": 1,
"maxMailboxDepth": 10,

}
by
"primaryAccounts": {
"urn:ietf:params:jmap:mail”: "A13824",
"urn:ietf:params: jmap:contacts": "A13824"
by
"username": "john@Rexample.com",
"apiUrl": "https://jmap.example.com/api/",
"downloadUrl": "https://jmap.example.com
/download/{accountId}/{blobId}/{name}?accept={typel}",
"uploadUrl": "https://Jjmap.example.com/upload/{accountId}/",
"eventSourceUrl": "https://Jjmap.example.com
/eventsource/?types={types}&closeafter={closeafter}&ping={ping}",
"state": "75128aab4dblb"

2.2. Service Autodiscovery

There are two standardised autodiscovery methods in use for Internet
protocols:

o DNS SRV (see [RFC2782], [RFC6186], and [RFC6764])
o .well-known/servicename (see [RFC8615])

A JMAP-supporting host for the domain "example.com" SHOULD publish a
SRV record "_jmap._tcp.example.com" that gives a hostname and port
(usually port "443"). The JMAP Session resource is then
"https://${hostname} [:${port}]/.well-known/Jjmap" (following any
redirects) .

If the client has a username in the form of an email address, it MAY

use the domain portion of this to attempt autodiscovery of the JMAP
server.

Jenkins & Newman Standards Track [Page 15]

RFC 8620 JMAP July 2019

3. Structured Data Exchange

The client may make an API request to the server to get or set
structured data. This request consists of an ordered series of
method calls. These are processed by the server, which then returns
an ordered series of responses.

3.1. Making an API Request

To make an API request, the client makes an authenticated POST
request to the API resource, which is defined by the "apiUrl"
property in the Session object (see Section 2).

The request MUST be of type "application/json" and consist of a
single JSON-encoded "Request" object, as defined in Section 3.3. If
successful, the response MUST also be of type "application/json" and
consist of a single "Response" object, as defined in Section 3.4.

3.2. The Invocation Data Type

Method calls and responses are represented by the *Invocation* data

type. This is a tuple, represented as a JSON array containing three
elements:

1. A "String" *name* of the method to call or of the response.

2. A "String[*]" object containing named *arguments* for that method
or response.

3. A "String" *method call id*: an arbitrary string from the client
to be echoed back with the responses emitted by that method call
(a method may return 1 or more responses, as it may make implicit
calls to other methods; all responses initiated by this method
call get the same method call id in the response).

3.3. The Request Object
A *Request* object has the following properties:
o using: "String[]"

The set of capabilities the client wishes to use. The client MAY
include capability identifiers even if the method calls it makes

do not utilise those capabilities. The server advertises the set
of specifications it supports in the Session object (see
Section 2), as keys on the "capabilities" property.

Jenkins & Newman Standards Track [Page 16]

RFC 8620 JMAP July 2019

o methodCalls: "Invocation[]"

An array of method calls to process on the server. The method
calls MUST be processed sequentially, in order.

o createdIds: "Id[Id]" (optional)

A map of a (client-specified) creation id to the id the server
assigned when a record was successfully created.

As described later in this specification, some records may have a
property that contains the id of another record. To allow more
efficient network usage, you can set this property to reference a
record created earlier in the same API request. Since the real id
is unknown when the request is created, the client can instead
specify the creation id it assigned, prefixed with a "#" (see
Section 5.3 for more details).

As the server processes API requests, any time it successfully
creates a new record, it adds the creation id to this map (see the
"create" argument to /set in Section 5.3), with the server-
assigned real id as the value. If it comes across a reference to
a creation id in a create/update, it looks it up in the map and
replaces the reference with the real id, if found.

The client can pass an initial value for this map as the
"createdIds" property of the Request object. This may be an empty
object. If given in the request, the response will also include a
createdIds property. This allows proxy servers to easily split a
JMAP request into multiple JMAP requests to send to different
servers. For example, it could send the first two method calls to
server A, then the third to server B, before sending the fourth to
server A again. By passing the createdIds of the previous
response to the next request, it can ensure all of these still
resolve. See Section 5.8 for further discussion of proxy
considerations.

Future specifications MAY add further properties to the Request
object to extend the semantics. To ensure forwards compatibility, a
server MUST ignore any other properties it does not understand on the
JMAP Request object.

Jenkins & Newman Standards Track [Page 17]

RFC 8620 JMAP

3.3.1. Example Request

"using": [
"methodCalls": [

["methodl", {
"argl": "argldata",
"arg2": "arg2data"

"cl"] ,
["method2", {
"argl": "argldata"
"c2"] ,

["method3",

{}’ "c3"]

3.4. The Response Object

A *Response* object has the following

o methodResponses: "Invocation[]"

An array of responses, in the same
the Request object. The output of
the "methodResponses" array in the
processed.

o createdIds:
request)

"Id[Id]" (optional;

A map of a (client-specified)

include all creation ids passed in
parameter of the Request object,
added for newly created records.

o sessionState: "String"

The current value of the "state" string on the Session object,
Clients may use this to detect if this

described in Section 2.
object has changed and needs to be

Unless otherwise specified,

successfully,
request.

Jenkins & Newman

"urn:ietf:params: jmap:core”,

Standards Track

July 2019

"urn:ietf:params:jmap:mail” 1,

properties:

format as the "methodCalls"
the methods MUST be added to
same order that the methods are

on

only returned if given in the

creation id to the id the server
assigned when a record was successfully created.

This MUST
the original createdIds

as well as any additional ones

as

refetched.

if the method call completed
its response name is the same as the method name in the

[Page 18]

RFC 8620 JMAP July 2019

3.4.1. Example Response

{
"methodResponses": [

["methodl", {
"argl": 3,
"argzll . "fooll

b}, "el" 1,
"method2", {
"isBlah": true

b, "e2" 1,
"anotherResponseFromMethod2", ({
"data": 10,

"yetmoredata": "Hello"

}r "02"]1
"error", {
"type":"unknownMethod"

}, na3n]

1/
"sessionState": "75128aab4blb"

}
3.5. Omitting Arguments

An argument to a method may be specified to have a default value. If
omitted by the client, the server MUST treat the method call the same
as i1f the default value had been specified. Similarly, the server
MAY omit any argument in a response that has the default value.

Unless otherwise specified in a method description, null is the
default value for any argument in a request or response where this is
allowed by the type signature. Other arguments may only be omitted
if an explicit default value is defined in the method description.

3.6. Errors

There are three different levels of granularity at which an error may
be returned in JMAP.

When an API request is made, the request as a whole may be rejected
due to rate limiting, malformed JSON, request for an unknown
capability, etc. 1In this case, the entire request is rejected with
an appropriate HTTP error response code and an additional JSON body
with more detail for the client.

Provided the request itself is syntactically valid (the JSON is wvalid

and when decoded, it matches the type signature of a Request obiject),
the methods within it are executed sequentially by the server. Each

Jenkins & Newman Standards Track [Page 19]

RFC 8620 JMAP July 2019

method may individually fail, for example, if invalid arguments are
given or an unknown method name is called.

Finally, methods that make changes to the server state often act upon
a number of different records within a single call. Each record
change may be separately rejected with a SetError, as described in
Section 5.3.

3.6.1. Request-Level Errors

When an HTTP error response is returned to the client, the server
SHOULD return a JSON "problem details" object as the response body,
as per [RFC7807].

The following problem types are defined:

o "urn:ietf:params:jmap:error:unknownCapability"
The client included a capability in the "using" property of the
request that the server does not support.

o "urn:ietf:params:jmap:error:notJSON"
The content type of the request was not "application/json" or the
request did not parse as I-JSON.

o "urn:ietf:params:jmap:error:notRequest"
The request parsed as JSON but did not match the type signature of
the Request object.

o "urn:ietf:params:jmap:error:limit"
The request was not processed as it would have exceeded one of the
request limits defined on the capability object, such as
maxSizeRequest, maxCallsInRequest, or maxConcurrentRequests. A
"limit" property MUST also be present on the "problem details"
object, containing the name of the limit being applied.

3.6.1.1. Example

"type": "urn:ietf:params:jmap:error:unknownCapability",
"status": 400,
"detail": "The Request object used capability

"https://example.com/apis/foobar’, which is not supported
by this server."

Jenkins & Newman Standards Track [Page 20]

RFC

Jen

8620 JMAP July 2019

Another example:

{

"type": "urn:ietf:params:jmap:error:limit",

"limit": "maxSizeRequest",

"status": 400,

"detail": "The request is larger than the server is willing to
process."

.2. Method-Level Errors

If a method encounters an error, the appropriate "error" response
MUST be inserted at the current point in the "methodResponses" array
and, unless otherwise specified, further processing MUST NOT happen
within that method call.

Any further method calls in the request MUST then be processed as
normal. Errors at the method level MUST NOT generate an HTTP-level
error.

An "error" response looks like this:

["error", {
"type": "unknownMethod"
}, "call-id"]

The response name is "error", and it MUST have a type property.
Other properties may be present with further information; these are
detailed in the error type descriptions where appropriate.

With the exception of when the "serverPartialFail" error is returned,
the externally visible state of the server MUST NOT have changed if
an error is returned at the method level.

The following error types are defined, which may be returned for any
method call where appropriate:

"serverUnavailable": Some internal server resource was temporarily
unavailable. Attempting the same operation later (perhaps after a
backoff with a random factor) may succeed.

"serverFail": An unexpected or unknown error occurred during the
processing of the call. A "description" property should provide more
details about the error. The method call made no changes to the
server’s state. Attempting the same operation again is expected to
fail again. Contacting the service administrator is likely necessary
to resolve this problem if it is persistent.

kins & Newman Standards Track [Page 21]

RFC 8620 JMAP July 2019

"serverPartialFail": Some, but not all, expected changes described by
the method occurred. The client MUST resynchronise impacted data to
determine server state. Use of this error is strongly discouraged.

"unknownMethod": The server does not recognise this method name.

"invalidArguments": One of the arguments is of the wrong type or is
otherwise invalid, or a required argument is missing. A
"description" property MAY be present to help debug with an
explanation of what the problem was. This is a non-localised string,
and it is not intended to be shown directly to end users.

"invalidResultReference": The method used a result reference for one
of its arguments (see Section 3.7), but this failed to resolve.

"forbidden": The method and arguments are valid, but executing the
method would violate an Access Control List (ACL) or other
permissions policy.

"accountNotFound": The accountId does not correspond to a valid
account.

"accountNotSupportedByMethod": The accountId given corresponds to a
valid account, but the account does not support this method or data

type.

"accountReadOnly": This method modifies state, but the account is
read-only (as returned on the corresponding Account object in the
JMAP Session resource).

Further possible errors for a particular method are specified in the
method descriptions.

Further general errors MAY be defined in future RFCs. Should a
client receive an error type it does not understand, it MUST treat it
the same as the "serverFail" type.

3.7. References to Previous Method Results

To allow clients to make more efficient use of the network and avoid
round trips, an argument to one method can be taken from the result
of a previous method call in the same request.

To do this, the client prefixes the argument name with "#" (an
octothorpe). The value is a ResultReference object as described
below. When processing a method call, the server MUST first check
the arguments object for any names beginning with "#". If found, the
result reference should be resolved and the value used as the "real"

Jenkins & Newman Standards Track [Page 22]

RFC 8620 JMAP July 2019

argument. The method is then processed as normal. If any result
reference fails to resolve, the whole method MUST be rejected with an
"invalidResultReference" error. If an arguments object contains the
same argument name in normal and referenced form (e.g., "foo" and
"#foo"), the method MUST return an "invalidArguments" error.

A *ResultReference* object has the following properties:
o resultOf: "String"

The method call id (see Section 3.2) of a previous method call in
the current request.

o name: "String"
The required name of a response to that method call.
o path: "String"

A pointer into the arguments of the response selected via the name
and resultOf properties. This is a JSON Pointer [RFC6901], except
it also allows the use of "*" to map through an array (see the
description below) .

To resolve:

1. Find the first response with a method call id identical to the
"resultOf" property of the ResultReference in the
"methodResponses" array from previously processed method calls in
the same request. If none, evaluation fails.

2. If the response name is not identical to the "name" property of
the ResultReference, evaluation fails.

3. Apply the "path" to the arguments object of the response (the
second item in the response array) following the JSON Pointer
algorithm [RFC6901], except with the following addition in
"Evaluation" (see Section 4):

If the currently referenced value is a JSON array, the reference
token may be exactly the single character "*", making the new
referenced value the result of applying the rest of the JSON
Pointer tokens to every item in the array and returning the
results in the same order in a new array. If the result of
applying the rest of the pointer tokens to each item was itself
an array, the contents of this array are added to the output
rather than the array itself (i.e., the result is flattened from
an array of arrays to a single array). If the result of applying

Jenkins & Newman Standards Track [Page 23]

RFC 8620 JMAP July 2019

the rest of the pointer tokens to a value was itself an array,
its items should be included individually in the output rather
than including the array itself (i.e., the result is flattened
from an array of arrays to a single array).

As a simple example, suppose we have the following API request
"methodCalls":

[["Foo/changes", {

"accountId": "Al",
"sinceState": "abcdef"

b, "t0" 1,

["Foo/get", {
"accountId": "Al",
"#ids": {

"resultOf": "t0O",
"name": "Foo/changes",
"path": "/created"
}
}, "tl"]]

After executing the first method call, the "methodResponses" array
is:

[["Foo/changes", {

"accountId": "Al",
"oldState": "abcdef",
"newState": "123456",
"hasMoreChanges": false,
"Created": ["flll, "f4"] ,
"updated": [],
"destroyed": []

boo"E0" 1]

To execute the "Foo/get" call, we look through the arguments and find
there is one with a "#" prefix. To resolve this, we apply the
algorithm above:

1. Find the first response with method call id "t0". The "Foo/
changes" response fulfils this criterion.

2. Check that the response name is the same as in the result
reference. It is, so this is fine.

3. Apply the "path" as a JSON Pointer to the arguments object. This

simply selects the "created" property, so the result of
evaluating is: ["f1", "f4"].

Jenkins & Newman Standards Track [Page 24]

RFC 8620 JMAP July 2019

The JMAP server now continues to process the "Foo/get" call as though
the arguments were:

"accountId": "Al",
"idsll: ["fl", "f4"]
}
Now, a more complicated example using the JMAP Mail data model: fetch
the "from"/"date"/"subject" for every Email in the first 10 Threads

in the inbox (sorted newest first):

[["Email/query", {

"accountId": "Al",

"filter": { "inMailbox": "id_of_inbox" 1},

"sort": [{ "property": "receivedAt", "isAscending": false }1],
"collapseThreads": true,

"position": O,

"limit": 10,
"calculateTotal": true

}I "to"],
["Email/get", {
"accountId": "Al",
"#ids": {
"resultOf": "tO",
"name": "Email/query",
"path": "/ids"
by
"properties": ["threadId"]
L N L
["Thread/get", {
"accountId": "Al",
"#ids": {
"resultOf": "t1",
"name": "Email/get",
"path": "/list/*/threadId"
}
}, "t2"],
["Email/get", {
"accountId": "Al",
"#ids": {
"resultOf": "t2",
"name": "Thread/get",
"path": "/list/*/emailIds"
by
"properties": ["from", "receivedAt", "subject"]
}, "t3"]]

Jenkins & Newman Standards Track [Page 25]

RFC 8620 JMAP

After executing the first 3 method calls, the

might be:

[["Email/query", {

"accountId": "Al",

"queryState": "abcdefg",

"canCalculateChanges": true,

"position": O,

"total": 101,

"ids": ["msgl023", "msg223",
"msg38", "msg36", "msg33",

}, "tO"],

["Email/get", {

"accountId": "Al",

"state": "123456",

"list": [{
"id":
"threadId":

boo A
"id":
"threadId":

"msgllO"
"msgll"

"msgl023",
"trdlo4"

"msg223",

"trdll14"
by
1,
"notFound":

boo"tl" 1,

["Thread/get", {
"accountId": "Al",
"state": "123456",
"list": [{

" id" .

"emailIds": [
boo A

n id" .

"emailIds": [

[]

"trdlo4",
"msgl020", "msglO21"
"trdll4",
"msg201", "msg223"]
by

1,
"notFound":
"t2"]]

[]
s

To execute the final "Email/get" call,
and find there is one with a "#" prefix.
the algorithm:

1.

get" response fulfils this criterion.

Jenkins & Newman Standards Track

Find the first response with method call id "t2".

July 2019

"methodResponses" array
, "msg93", "msg9l",

’ "msgl"]

, "msgl023"]

we look through the arguments
To resolve this,

we apply

The "Thread/

[Page 26]

RFC 8620 JMAP July 2019

2. "Thread/get" is the name specified in the result reference, so
this is fine.

3. Apply the "path" as a JSON Pointer to the arguments object.
Token by token:

1. "list": get the array of thread objects
2., "*": for each of the items in the array:
a. "emailIds": get the array of Email ids

b. Concatenate these into a single array of all the ids in
the result.

The JMAP server now continues to process the "Email/get" call as
though the arguments were:

"accountId": "Al",
"ids": ["msgl020", "msgl021", "msgl023", "msg201", "msg223", ... 1,
"properties”: ["from", "receivedAt", "subject"]

The ResultReference performs a similar role to that of the creation
id, in that it allows a chained method call to refer to information
not available when the request is generated. However, they are
different things and not interchangeable; the only commonality is the
octothorpe used to indicate them.

3.8. Localisation of User-Visible Strings

If returning a custom string to be displayed to the user, for
example, an error message, the server SHOULD use information from the
Accept-Language header of the request (as defined in Section 5.3.5 of
[RFC7231]) to choose the best available localisation. The Content-
Language header of the response (see Section 3.1.3.2 of [RFC7231])
SHOULD indicate the language being used for user-visible strings.

For example, suppose a request was made with the following header:
Accept-Language: fr-CH, fr;g=0.9, de;qg=0.8, en;g=0.7, *;g=0.5

and a method generated an error to display to the user. The server

has translations of the error message in English and German. Looking

at the Accept-Language header, the user’s preferred language is
French. Since we don’t have a translation for this, we look at the

Jenkins & Newman Standards Track [Page 27]

RFC 8620 JMAP July 2019

next most preferred, which is German. We have a German translation,
so the server returns this and indicates the language chosen in a
Content-Language header like so:

Content-Language: de

.9. Security

As always, the server must be strict about data received from the
client. Arguments need to be checked for validity; a malicious user
could attempt to find an exploit through the API. 1In case of invalid
arguments (unknown/insufficient/wrong type for data, etc.), the
method MUST return an "invalidArguments" error and terminate.

.10. Concurrency

Method calls within a single request MUST be executed in order.
However, method calls from different concurrent API requests may be
interleaved. This means that the data on the server may change
between two method calls within a single API request.

The Core/echo Method
The "Core/echo" method returns exactly the same arguments as it is
given. It is useful for testing if you have a valid authenticated

connection to a JMAP API endpoint.

.1. Example

Request:
[["Core/echo", {
"hello": true,
"high": 5
b, "B3LE" 1
Response:

[["Core/echo", {
"hello": true,
"high": 5

boo "B3EE"]1

Jenkins & Newman Standards Track [Page 28]

RFC 8620 JMAP July 2019

5.

5.

Standard Methods and Naming Convention

JMAP provides a uniform interface for creating, retrieving, updating,
and deleting objects of a particular type. For a "Foo" data type,
records of that type would be fetched via a "Foo/get" call and
modified via a "Foo/set" call. Delta updates may be fetched via a

"Foo/changes" call. These methods all follow a standard format as
described below.

Some types may not have all these methods. Specifications defining
types MUST specify which methods are available for the type.

1. /get

Objects of type Foo are fetched via a call to "Foo/get".

It takes the following arguments:

o accountId: "Id"
The id of the account to use.

o ids: "Id[]|null"
The ids of the Foo objects to return. If null, then *all* records
of the data type are returned, if this is supported for that data
type and the number of records does not exceed the
"maxObjectsInGet" limit.

o properties: "String[]|null"
If supplied, only the properties listed in the array are returned
for each Foo object. If null, all properties of the object are
returned. The id property of the object is *always* returned,
even i1f not explicitly requested. If an invalid property is
requested, the call MUST be rejected with an "invalidArguments"
error.

The response has the following arguments:

o accountId: "Id"

The id of the account used for the call.

Jenkins & Newman Standards Track [Page 29]

RFC 8620 JMAP July 2019

o state: "String"

A (preferably short) string representing the state on the server
for *all* the data of this type in the account (not just the
objects returned in this call). If the data changes, this string
MUST change. 1If the Foo data is unchanged, servers SHOULD return
the same state string on subsequent requests for this data type.
When a client receives a response with a different state string to
a previous call, it MUST either throw away all currently cached
objects for the type or call "Foo/changes" to get the exact
changes.

o list: "Foo[]"

An array of the Foo objects requested. This is the *empty array*
if no objects were found or if the "ids" argument passed in was
also an empty array. The results MAY be in a different order to
the "ids" in the request arguments. If an identical id is
included more than once in the request, the server MUST only
include it once in either the "list" or the "notFound" argument of
the response.

o notFound: "Id[]"

This array contains the ids passed to the method for records that

do not exist. The array is empty if all requested ids were found
or if the "ids" argument passed in was either null or an empty
array.

The following additional error may be returned instead of the "Foo/
get" response:

"requestTooLarge": The number of ids requested by the client exceeds
the maximum number the server is willing to process in a single
method call.

5.2. /changes
When the state of the set of Foo records in an account changes on the
server (whether due to creation, updates, or deletion), the "state"
property of the "Foo/get" response will change. The "Foo/changes"
method allows a client to efficiently update the state of its Foo
cache to match the new state on the server. It takes the following
arguments:

o accountId: "Id"

The id of the account to use.

Jenkins & Newman Standards Track [Page 30]

RFC 8620 JMAP July 2019

sinceState: "String"
The current state of the client. This is the string that was
returned as the "state" argument in the "Foo/get" response. The

server will return the changes that have occurred since this
state.

maxChanges: "UnsignedInt |null"

The maximum number of ids to return in the response. The server
MAY choose to return fewer than this wvalue but MUST NOT return
more. If not given by the client, the server may choose how many
to return. If supplied by the client, the value MUST be a
positive integer greater than 0. If a value outside of this range
is given, the server MUST reject the call with an
"invalidArguments" error.

The response has the following arguments:

o

accountId: "I4d"
The id of the account used for the call.
oldState: "String"

This is the "sinceState" argument echoed back; it’s the state from
which the server is returning changes.

newState: "String"

This is the state the client will be in after applying the set of
changes to the old state.

hasMoreChanges: "Boolean"

If true, the client may call "Foo/changes" again with the
"newState" returned to get further updates. If false, "newState"
is the current server state.

created: "IdA[]I"

An array of ids for records that have been created since the old
state.

updated: "Id[]"

An array of ids for records that have been updated since the old
state.

Jenkins & Newman Standards Track [Page 31]

RFC 8620 JMAP July 2019

o destroyed: "Id[]"

An array of ids for records that have been destroyed since the old
state.

If a record has been created AND updated since the old state, the
server SHOULD just return the id in the "created" list but MAY return
it in the "updated" list as well.

If a record has been updated AND destroyed since the old state, the
server SHOULD just return the id in the "destroyed" list but MAY
return it in the "updated" list as well.

If a record has been created AND destroyed since the old state, the
server SHOULD remove the id from the response entirely. However, it
MAY include it in just the "destroyed" list or in both the
"destroyed" and "created" lists.

If a "maxChanges" is supplied, or set automatically by the server,
the server MUST ensure the number of ids returned across "created",
"updated", and "destroyed" does not exceed this limit. If there are
more changes than this between the client’s state and the current
server state, the server SHOULD generate an update to take the client
to an intermediate state, from which the client can continue to call
"Foo/changes" until it is fully up to date. If it is unable to
calculate an intermediate state, it MUST return a
"cannotCalculateChanges" error response instead.

When generating intermediate states, the server may choose how to
divide up the changes. For many types, it will provide a better user
experience to return the more recent changes first, as this is more
likely to be what the user is most interested in. The client can
then continue to page in the older changes while the user is viewing
the newer data. For example, suppose a server went through the
following states:

A ->B ->C ->D ->E
And a client asks for changes from state "B". The server might first
get the ids of records created, updated, or destroyed between states

D and E, returning them with:

state: "B-D-E"
hasMoreChanges: true

Jenkins & Newman Standards Track [Page 32]

RFC 8620 JMAP July 2019

The client will then ask for the change from state "B-D-E", and the
server can return the changes between states C and D, returning:

state: "B-C-E"
hasMoreChanges: true

Finally, the client will request the changes from "B-C-E", and the
server can return the changes between states B and C, returning:

state: "E"
hasMoreChanges: false

Should the state on the server be modified in the middle of all this
(to "F"), the server still does the same, but now when the update to
state "E" is returned, it would indicate that it still has more
changes for the client to fetch.

Where multiple changes to a record are split across different
intermediate states, the server MUST NOT return a record as created
after a response that deems it as updated or destroyed, and it MUST
NOT return a record as destroyed before a response that deems it as
created or updated. The server may have to coalesce multiple changes
to a record to satisfy this requirement.

The following additional errors may be returned instead of the "Foo/
changes" response:

"cannotCalculateChanges": The server cannot calculate the changes
from the state string given by the client. Usually, this is due to
the client’s state being too old or the server being unable to
produce an update to an intermediate state when there are too many
updates. The client MUST invalidate its Foo cache.

Maintaining state to allow calculation of "Foo/changes" can be
expensive for the server, but always returning
"cannotCalculateChanges" severely increases network traffic and
resource usage for the client. To allow efficient sync, servers
SHOULD be able to calculate changes from any state string that was
given to a client within the last 30 days (but of course may support
calculating updates from states older than this).

Jenkins & Newman Standards Track [Page 33]

RFC 8620 JMAP July 2019

5.3. /set

Modifying the state of Foo objects on the server is done via the
"Foo/set" method. This encompasses creating, updating, and
destroying Foo records. This allows the server to sort out ordering
and dependencies that may exist if doing multiple operations at once
(for example, to ensure there is always a minimum number of a certain
record type).

The "Foo/set" method takes the following arguments:

o accountId: "Id"
The id of the account to use.

o ifInState: "String|null"
This is a state string as returned by the "Foo/get" method
(representing the state of all objects of this type in the
account). If supplied, the string must match the current state;
otherwise, the method will be aborted and a "stateMismatch" error
returned. If null, any changes will be applied to the current
state.

O create: "Id[Foo]|null"

A map of a *creation id* (a temporary id set by the client) to Foo
objects, or null if no objects are to be created.

The Foo object type definition may define default values for
properties. Any such property may be omitted by the client.

The client MUST omit any properties that may only be set by the
server (for example, the "id" property on most object types).

o update: "Id[PatchObject]|null"

A map of an id to a Patch object to apply to the current Foo
object with that id, or null if no objects are to be updated.

A *PatchObject* is of type "String[*]" and represents an unordered
set of patches. The keys are a path in JSON Pointer format
[REFC6901], with an implicit leading "/" (i.e., prefix each key
with "/" before applying the JSON Pointer evaluation algorithm).

All paths MUST also conform to the following restrictions; if

there is any violation, the update MUST be rejected with an
"invalidPatch" error:

Jenkins & Newman Standards Track [Page 34]

RFC 8620 JMAP July 2019

* The pointer MUST NOT reference inside an array (i.e., you MUST
NOT insert/delete from an array; the array MUST be replaced in
its entirety instead).

* All parts prior to the last (i.e., the value after the final
slash) MUST already exist on the object being patched.

* There MUST NOT be two patches in the PatchObject where the
pointer of one is the prefix of the pointer of the other, e.g.,
"alerts/1l/offset" and "alerts".

The value associated with each pointer determines how to apply
that patch:

* TIf null, set to the default value if specified for this
property; otherwise, remove the property from the patched
object. If the key is not present in the parent, this a no-op.

* Anything else: The value to set for this property (this may be
a replacement or addition to the object being patched).

Any server-set properties MAY be included in the patch if their
value is identical to the current server value (before applying
the patches to the object). Otherwise, the update MUST be
rejected with an "invalidProperties" SetError.

This patch definition is designed such that an entire Foo object
is also a valid PatchObject. The client may choose to optimise
network usage by just sending the diff or may send the whole
object; the server processes it the same either way.

o destroy: "Id[]|null"

A list of ids for Foo objects to permanently delete, or null if no
objects are to be destroyed.

Each creation, modification, or destruction of an object is
considered an atomic unit. It is permissible for the server to
commit changes to some objects but not others; however, it MUST NOT
only commit part of an update to a single record (e.g., update a