
RFC 9899
Extensions to the Access Control Lists (ACLs) YANG
Model

Abstract
RFC 8519 defines a YANG data model for Access Control Lists (ACLs). This document specifies a
set of extensions that fix many of the limitations of the ACL model as initially defined in RFC
8519. Specifically, it introduces augmentations to the ACL base model to enhance its functionality
and applicability.

The document also defines IANA-maintained modules for ICMP types and IPv6 extension
headers.

Stream: Internet Engineering Task Force (IETF)
RFC: 9899
Category: Standards Track
Published: November 2025
ISSN: 2070-1721
Authors: O. Gonzalez de Dios

Telefonica
S. Barguil
Nokia

M. Boucadair
Orange

Q. Wu
Huawei

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9899

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Gonzalez de Dios, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9899
https://www.rfc-editor.org/info/rfc9899
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

2. Terminology

3. Overall Structure of the Enhanced ACL Module

3.1. Tree Structure

3.2. Defined Sets

3.3. IPv6 Extension Headers

3.4. TCP Flags Handling

3.5. Fragments Handling

3.6. Payload-Based Filtering

3.7. Match on MPLS Headers

3.8. VLAN Filtering

3.9. Instance Service Identifier (I-SID) Filtering

3.10. Additional Actions

4. Enhanced ACL YANG Module

5. Security Considerations

6. IANA Considerations

6.1. URI Registrations

6.2. YANG Module Name Registrations

6.3. Considerations for IANA-Maintained Modules

6.3.1. ICMPv4 Types IANA Module

6.3.2. ICMPv6 Types IANA Module

6.3.3. IPv6 Extension Header Types IANA Module

7. References

7.1. Normative References

7.2. Informative References

3

4

5

5

9

10

10

11

11

11

11

12

12

12

34

35

35

35

36

36

37

38

39

39

40

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 2

Appendix A. Problem Statement and Gap Analysis

A.1. Suboptimal Configuration: Lack of Support for Lists of Prefixes

A.2. Manageability: Impossibility of Using Aliases or Defined Sets

A.3. Bind ACLs to Devices, Not Only Interfaces

A.4. Partial or Lack of IPv4/IPv6 Fragment Handling

A.5. Suboptimal TCP Flags Handling

A.6. Rate-Limit Action

A.7. Payload-Based Filtering

A.8. Reuse the Content of ACLs Across Several Devices

A.9. Match MPLS Headers

Appendix B. Examples

B.1. TCP Flags Handling

B.2. Fragments Handling

B.3. Pattern-Based Filtering

B.4. VLAN Filtering

B.5. ISID Filtering

B.6. Rate-Limit

Acknowledgments

Authors' Addresses

42

42

44

45

45

45

45

45

46

46

46

46

47

50

50

51

52

53

54

1. Introduction
 defines Access Control Lists (ACLs) as a user-ordered set of filtering rules. The model

targets the configuration of the filtering behavior of a device. However, the model structure, as
defined in , suffers from a set of limitations. This document identifies these limitations
and specifies an enhanced ACL structure, introducing augmentations to the ACL base model
(Section 4). The motivation of such an enhanced ACL structure is discussed in detail in Appendix
A.

When managing ACLs, it is common for network operators to group match elements in
predefined sets. The consolidation into group matches allows for reducing the number of rules,
especially in large-scale networks. For example, if finding a match against 100 IP addresses (or

[RFC8519]

[RFC8519]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 3

prefixes) is needed, a single rule will suffice rather than creating individual Access Control
Entries (ACEs) for each IP address (or prefix). In doing so, implementations would optimize the
performance of matching lists versus multiple rules matching.

The enhanced ACL structure (see "ietf-acl-enh" in Section 4) is also meant to facilitate the
management of network operators. Instead of entering the IP address or port number literals,
using user-named lists decouples the creation of the rule from the management of the sets.
Hence, it is possible to remove/add entries to the list without redefining the (parent) ACL rule.

In addition, the notion of ACL and defined sets is generalized so that it is not device specific as
per . ACLs and defined sets may be defined at the network/administrative domain
level and associated to devices. This approach facilitates the reusability across multiple network
elements. For example, managing the IP prefix sets from a network level makes it easier to
maintain by the security groups.

Network operators maintain sets of IP prefixes that are related to each other, e.g., deny-lists or
accept-lists that are associated with those provided by a VPN customer. These lists are
maintained and manipulated by security expert teams of the network operators.

Note that ACLs are used locally in devices but are triggered by other tools such as DDoS
mitigation or BGP Flow Spec . Therefore, it is valuable from a
network operation standpoint to support the means to easily map to the filtering rules conveyed
in messages triggered by these tools.

The enhanced ACL module (Section 4) conforms to the Network Management Datastore
Architecture (NMDA) defined in .

A set of examples to illustrate the use of the enhanced ACL module is provided in Appendix B.

This document also defines IANA-maintained modules for ICMP types and IPv6 extension
headers. The design of the modules adheres to the recommendations in

. The latest version of these IANA-maintained modules can be retrieved from the
"YANG Parameters" registry group .

[RFC8519]

[RFC9132] [RFC8955] [RFC8956]

[RFC8342]

Section 4.30.2 of [YANG-
GUIDELINES]

[IANA-YANG-PARAMETERS]

Defined set:

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The terminology for describing YANG modules is defined in . The meaning of the
symbols in the tree diagrams is defined in .

In addition to the terms defined in , this document makes use of the following term:

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC7950]
[RFC8340]

[RFC8519]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 4

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-28#section-4.30.2

Elements in a defined set typically share a logical purpose or function, such as IP addresses,
IP prefixes, port numbers, or ICMP types.

3. Overall Structure of the Enhanced ACL Module

3.1. Tree Structure
Figure 1 shows the full tree of the enhanced ACL module (Section 4):

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 5

module: ietf-acl-enh

 augment /acl:acls:
 +--rw defined-sets
 +---u defined-sets
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
 +--rw (payload)?
 | +--:(pattern)
 | +--rw pattern {match-on-payload}?
 | +---u payload-match
 +--rw (alias)?
 | +--:(alias-name)
 | +--rw alias-name* alias-ref
 +--rw (mpls)?
 +--:(mpls-values)
 +--rw mpls-values {match-on-mpls}?
 +---u mpls-match-parameters-config
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l2:
 +--rw vlan-filter {match-on-vlan-filter}?
 | +--rw frame-type? string
 | +--rw (vlan-type)?
 | +--:(range)
 | | +--rw lower-vlan uint16
 | | +--rw upper-vlan uint16
 | +--:(operator)
 | +--rw operator? packet-fields:operator
 | +--rw vlan* uint16
 +--rw isid-filter {match-on-isid-filter}?
 +--rw (isid-type)?
 +--:(range)
 | +--rw lower-isid uint16
 | +--rw upper-isid uint16
 +--:(operator)
 +--rw operator? packet-fields:operator
 +--rw isid* uint16
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l3
 /acl:ipv4/acl:ipv4:
 +--rw ipv4-fragment
 | +---u fragment-fields
 +--rw source-ipv4-prefix-list? ipv4-prefix-set-ref
 +--rw destination-ipv4-prefix-list? ipv4-prefix-set-ref
 +--rw protocol-set? protocol-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l3
 /acl:ipv6/acl:ipv6:
 +--rw ipv6-fragment
 | +---u fragment-fields
 +--rw source-ipv6-prefix-list? ipv6-prefix-set-ref
 +--rw destination-ipv6-prefix-list? ipv6-prefix-set-ref
 +--rw protocol-set? protocol-set-ref
 +--rw extension-header?
 iana-ipv6-ext-types:ipv6-extension-header-type
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l4
 /acl:tcp/acl:tcp:
 +--rw flags-bitmask
 | +---u tcp-flags
 +--rw source-tcp-port-set? port-set-ref
 +--rw destination-tcp-port-set? port-set-ref

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 6

Figure 2 shows the reusable groupings that are defined in the enhanced ACL module:

Figure 1: Enhanced ACL Tree Structure

 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l4
 /acl:udp/acl:udp:
 +--rw source-udp-port-set? port-set-ref
 +--rw destination-udp-port-set? port-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l4
 /acl:icmp/acl:icmp:
 +--rw icmpv4-set? icmpv4-type-set-ref
 +--rw icmpv6-set? icmpv6-type-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:actions:
 +---u acl-complementary-actions
 +--rw rate-limit? decimal64

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 7

 grouping tcp-flags:
 +--rw operator? operator
 +-- (mode)?
 +--:(explicit)
 | +-- explicit-tcp-flag* identityref
 +--:(builtin)
 +-- bitmask? uint16
 grouping fragment-fields:
 +-- operator? operator
 +-- type? fragment-type
 grouping mpls-match-parameters-config:
 +-- traffic-class? uint8
 +-- label-position? identityref
 +-- upper-label-range? rt-types:mpls-label
 +-- lower-label-range? rt-types:mpls-label
 +-- label-block-name? string
 +-- ttl-value? uint8
 grouping payload-match:
 +-- offset? identityref
 +-- length? uint16
 +-- operator? operator
 +-- pattern? binary
 grouping alias:
 +-- vlan* uint16
 +-- prefix* inet:ip-prefix
 +-- port-range* [lower-port]
 | +-- lower-port inet:port-number
 | +-- upper-port? inet:port-number
 +-- protocol* uint8
 +-- fqdn* inet:domain-name
 +-- uri* inet:uri
 grouping icmpv4-header-fields:
 +-- type? iana-icmpv4-types:icmpv4-type
 +-- code? uint8
 +-- rest-of-header? binary
 grouping icmpv6-header-fields:
 +-- type? iana-icmpv6-types:icmpv6-type
 +-- code? uint8
 +-- rest-of-header? binary
 grouping acl-complementary-actions:
 +-- log-action
 | +-- log-type? identityref
 | +-- log-id? string
 +-- counter-action
 +-- counter-type? identityref
 +-- counter-name* string
 grouping ipv4-prefix-sets:
 +-- prefix-set* [name]
 +-- name string
 +-- description? string
 +-- prefix* inet:ipv4-prefix
 grouping ipv6-prefix-sets:
 +-- prefix-set* [name]
 +-- name string
 +-- description? string
 +-- prefix* inet:ipv6-prefix
 grouping port-sets:

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 8

Figure 2: Enhanced ACL Groupings

 +-- port-set* [name]
 +-- name string
 +-- port* [id]
 +-- id string
 +-- (port)?
 +--:(port-range-or-operator)
 +-- port-range-or-operator
 +---u packet-fields:port-range-or-operator
 grouping protocol-sets:
 +-- protocol-set* [name]
 +-- name string
 +-- protocol* union
 grouping icmpv4-type-sets:
 +-- set* [name]
 +-- name string
 +-- icmpv4-type* [type]
 +---u icmpv4-header-fields
 grouping icmpv6-type-sets:
 +-- set* [name]
 +-- name string
 +-- icmpv6-type* [type]
 +---u icmpv6-header-fields
 grouping aliases:
 +-- alias* [name]
 +-- name string
 +---u alias
 grouping defined-sets:
 +-- ipv4-prefix-sets
 | +---u ipv4-prefix-sets
 +-- ipv6-prefix-sets
 | +---u ipv6-prefix-sets
 +-- port-sets
 | +---u port-sets
 +-- protocol-sets
 | +---u protocol-sets
 +-- icmpv4-type-sets
 | +---u icmpv4-type-sets
 +-- icmpv6-type-sets
 | +---u icmpv6-type-sets
 +-- aliases
 +---u aliases

IPv4 prefix sets:

3.2. Defined Sets
The augmented ACL structure includes several containers to manage reusable sets of elements
that can be matched in an ACL entry. Each set is uniquely identified by a name and can be called
from the relevant entry. The following sets (seen in Figure 1) are defined:

An IPv4 prefix set contains a list of IPv4 prefixes. A match will be considered if
the IP address (source or destination, depending on the ACL entry) is contained in any of the
prefixes in the set.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 9

IPv6 prefix sets:

Port sets:

Protocol sets:

ICMP sets:

Aliases:

Payload-based filtering:

An IPv6 prefix contains a list of IPv6 prefixes. A match will be considered if the
IP address (source or destination, depending on the ACL entry) is contained in any of the
prefixes in the set.

A port set contains a list of port numbers to be used in transport protocol entries (e.g.,
TCP and UDP).

A port number can be a port range or a single port number along with an operator (equal to,
greater than or equal to, etc.).

A protocol set contains a list of protocol values. A protocol can be identified by
either a number (e.g., 17) or a name (e.g., UDP).

An ICMP set contains a list of ICMPv4 or ICMPv6 types, each of
them identified by a type value, optionally the code and the rest of the header.

IANA-maintained modules for ICMP types are defined in this document.

An alias is defined by a combination of various parameters (e.g., IP prefix, protocol,
port number, or VLAN). When only sets of one parameter (e.g., protocol) are
handled, then the relevant parameter sets should be used (e.g., protocol set) rather than an
alias.

For example, an alias can be defined to apply ACL policies bound to a set of HTTPS servers.
Such an alias will typically include these HTTPS server addresses (e.g., "prefix":
["2001:db8:6401::1/128","2001:db8:6401::2/128"]) and the TCP port number 443 (i.e.,
"protocol": [6] and "lower-port": 443).

Sets of aliases can be defined and referred to in ACL match criteria.

A network traffic filtering technique that examines the data payload of
packets, beyond just the header information, to identify, allow, or block traffic based on
specific content or patterns within the payload. An offset type (e.g., Layer 2 or Layer 3) is used
to indicate the position of the data in the packet to use for the match.

[RFC0792] [RFC4443]

[IEEE802.1Qcp]

3.3. IPv6 Extension Headers
The enhanced ACL module can be used to manage ACLs that require matching against IPv6
extension headers . To that aim, a new IANA-maintained module for IPv6 extension
header types, "iana-ipv6-ext-types", is defined in this document.

[RFC8200]

3.4. TCP Flags Handling
The augmented ACL module includes a new container 'flags-bitmask' to better handle TCP flags
(). Assigned TCP flags are maintained in the "TCP Header Flags" registry
under the "Transmission Control Protocol (TCP) Parameters" registry group .

Clients that support both 'flags-bitmask' and 'flags' matching fields set these
fields in the same request.

Section 3.1 of [RFC9293]
[IANA-TCP-FLAGS]

[RFC8519] MUST NOT

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc9293#section-3.1

3.5. Fragments Handling
The augmented ACL module includes new leafs 'ipv4-fragment' and 'ipv6-fragment' to better
handle fragments.

Clients that support both 'ipv4-fragment' and 'flags' matching fields set
these fields in the same request.

[RFC8519] MUST NOT

3.6. Payload-Based Filtering
Some transport protocols use existing protocols (e.g., TCP or UDP) as substrate. The match
criteria for such protocols may rely upon the 'protocol' under 'l3', TCP/UDP match criteria, part
of the TCP/UDP payload, or a combination thereof.

A new feature, called 'match-on-payload', is defined in the document. This can be used, for
example, for QUIC or for tunneling protocols. This feature requires configuring a data
offset, a length, and a binary pattern to match data against using a specified operator. The data
offset indicates the position to look at in a packet (e.g., it starts at the beginning of the IP header
or transport header).

[RFC9000]

3.7. Match on MPLS Headers
The enhanced ACL module (Section 4) can be used to create rules to match against the MPLS
fields of a packet. The MPLS header defined in and contains the following
fields:

Traffic Class: The 3-bit "Exp" field , which is renamed to "Traffic Class field" ("TC
field") .
Label Value: A 20-bit field that carries the actual value of the MPLS label.
TTL: An 8-bit field used to encode the Time-to-Live (TTL) value.

The augmented ACL module can be used by an operator to configure ACLs that match based
upon the following data nodes:

'traffic-class'
'label-position' (e.g., top or bottom)
'upper-label-range'
'lower-label-range'
'label-block-name'
'ttl-value'

[RFC3032] [RFC5462]

• [RFC3032]
[RFC5462]

•
•

•
•
•
•
•
•

3.8. VLAN Filtering
Being able to filter all packets that are bridged within a VLAN or that are routed into or out of a
bridge domain is part of the VPN control requirements for Ethernet VPN (EVPN) .[RFC7209]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 11

All packets that are bridged within a VLAN or that are routed into or out of a VLAN can be
captured, forwarded, translated, or discarded based on the network policy.

3.9. Instance Service Identifier (I-SID) Filtering
Provider Backbone Bridging (PBB) was originally defined as a Virtual Bridged Local Area
Networks standard . However, instead of multiplexing VLANs, PBB duplicates the
Media Access Control (MAC) layer of the customer frame and separates it from the provider
domain, by encapsulating it in a 24-bit Instance Service Identifier (I-SID). This provides more
transparency between the customer network and the provider network.

The I-component forms the customer- or access-facing interface or routing instance. The I-
component is responsible for mapping customer Ethernet traffic to the appropriate I-SID. It is
mandatory to configure the default service identifier in the network.

Being able to filter by I-component service identifier is a feature of the EVPN-PBB configuration.

[IEEE-802-1ah]

3.10. Additional Actions
In order to support rate-limiting (see Appendix A.6), a new action called 'rate-limit' is defined in
this document.

Also, the "ietf-acl-enh" module supports new actions to complement existing ones: log ('log-
action') and write a counter ('counter-action'). The version of the module defined in this
document supports only local actions.

4. Enhanced ACL YANG Module
This Yang module imports types from , , and .[RFC6991] [RFC8519] [RFC8294]

<CODE BEGINS> file "ietf-acl-enh@2025-11-07.yang"

module ietf-acl-enh {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-acl-enh";
 prefix acl-enh;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 12

 Control Lists (ACLs), Section 4.1";
 }
 import ietf-packet-fields {
 prefix packet-fields;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs), Section 4.2";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import iana-icmpv4-types {
 prefix iana-icmpv4-types;
 reference
 "RFC 9899: Extensions to the Access Control Lists (ACLs)
 YANG Model";
 }
 import iana-icmpv6-types {
 prefix iana-icmpv6-types;
 reference
 "RFC 9899: Extensions to the Access Control Lists (ACLs)
 YANG Model";
 }
 import iana-ipv6-ext-types {
 prefix iana-ipv6-ext-types;
 reference
 "RFC 9899: Extensions to the Access Control Lists (ACLs)
 YANG Model";
 }

 organization
 "IETF NETMOD Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>
 Author: Samier Barguil
 <mailto:samier.barguil_giraldo@nokia.com>
 Author: Oscar Gonzalez de Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";
 description

 "This module contains YANG definitions for enhanced ACLs.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 13

 This version of this YANG module is part of RFC 9899; see the
 RFC itself for full legal notices.";

 revision 2025-11-07 {
 description
 "Initial revision.";
 reference
 "RFC 9899: Extensions to the Access Control Lists (ACLs)
 YANG Model";
 }

 feature match-on-payload {
 description
 "Match based on a pattern is supported.";
 }

 feature match-on-vlan-filter {
 description
 "Match based on a VLAN range of a VLAN list is supported.";
 }

 feature match-on-isid-filter {
 description
 "Match based on an I-SID range of a VLAN list is supported.";
 }

 feature match-on-alias {
 description
 "Match based on aliases.";
 }

 feature match-on-mpls {
 description
 "Match based on MPLS headers.";
 }

 identity offset-type {
 description
 "Base identity for payload offset type.";
 }

 identity layer2 {
 base offset-type;
 description
 "The offset starts at the beginning of the Data Link Layer
 header.";
 }

 identity layer3 {
 base offset-type;
 description
 "The offset starts at the beginning of the IP header.";
 }

 identity layer4 {
 base offset-type;
 description
 "The offset starts right after the IP header (including

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 14

 any options or headers pertaining to that IP layer, e.g.,
 IPv6 Extension Headers and the Authentication Header (AH)).

 This can be typically the beginning of transport header
 (e.g., UDP, TCP, the Stream Control Transmission Protocol
 (SCTP), and the Datagram Congestion Control Protocol (DCCP))
 or any encapsulation scheme over IP such as IP-in-IP.";
 }

 identity payload {
 base offset-type;
 description
 "The offset starts right after the end of the transport
 header. For example, this represents the beginning of the
 TCP data right after any TCP options or the beginning of
 the UDP payload right after the UDP header.

 This type may be used for matches against any data in
 the transport payload and/or any surplus area (if any,
 such as in UDP).";
 }

 identity tcp-flag {
 description
 "Base identity for the TCP Flags.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity ack {
 base tcp-flag;
 description
 "Acknowledgment TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity syn {
 base tcp-flag;
 description
 "Synchronize sequence numbers.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity fin {
 base tcp-flag;
 description
 "No more data from the sender.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity urg {
 base tcp-flag;
 description
 "Urgent pointer TCP flag bit.";
 reference

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 15

 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity psh {
 base tcp-flag;
 description
 "The Push function flag is similar to the URG flag and tells
 the receiver to process these packets as they are received
 instead of buffering them.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity rst {
 base tcp-flag;
 description
 "Reset TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity ece {
 base tcp-flag;
 description
 "ECN-Echo TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity cwr {
 base tcp-flag;
 description
 "Congestion Window Reduced flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity ae {
 base tcp-flag;
 description
 "Accurate Explicit Congestion Notification (ECN).

 Previously used as Nonce Sum (NS), which is now
 historic.";
 }

 identity mpls-acl-type {
 base acl:acl-base;
 description
 "An ACL that matches on fields from the MPLS header.";
 }

 identity label-position {
 description
 "Base identity for deriving MPLS label position.";
 }

 identity top {

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 16

 base label-position;
 description
 "Top of the label stack.";
 }

 identity bottom {
 base label-position;
 description
 "Bottom of the label stack.";
 }

 identity log-types {
 description
 "Base identity for deriving the log actions.";
 }

 identity local-log {
 base log-types;
 description
 "A local log is used to record the ACL results.";
 }

 identity counter-type {
 description
 "Base identity for deriving the counter actions.";
 }

 identity counter-name {
 base counter-type;
 description
 "Identity for counter name to be updated based on
 the ACL match actions.";
 }

 typedef operator {
 type bits {
 bit not {
 position 0;
 description
 "If set, the logical negation of operation.";
 }
 bit match {
 position 1;
 description
 "Match bit. This is a bitwise match operation defined as
 '(data & value) == value'.";
 }
 bit any {
 position 2;
 description
 "Any bit. This is a match on any of the bits in bitmask.
 It evaluates to 'true' if any of the bits in the
 value mask are set in the data, i.e.,
 '(data & value) != 0'.";
 }
 }
 description
 "Specifies how to apply the defined bitmask. The

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 17

 'any' and 'match' bits must not be set simultaneously.";
 }

 typedef fragment-type {
 type bits {
 bit df {
 position 0;
 description
 "Don't fragment bit for IPv4. Must be set to 0 when it
 appears in an IPv6 filter.";
 }
 bit isf {
 position 1;
 description
 "Is a fragment.";
 }
 bit ff {
 position 2;
 description
 "First fragment.";
 }
 bit lf {
 position 3;
 description
 "Last fragment.";
 }
 }
 description
 "Different fragment types to match against.";
 }

 typedef ipv4-prefix-set-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:ipv4-prefix-sets"
 + "/acl-enh:prefix-set/acl-enh:name";
 }
 description
 "Defines a reference to an IPv4 prefix set.";
 }

 typedef ipv6-prefix-set-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:ipv6-prefix-sets"
 + "/acl-enh:prefix-set/acl-enh:name";
 }
 description
 "Defines a reference to an IPv6 prefix set.";
 }

 typedef port-set-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:port-sets"
 + "/acl-enh:port-set/acl-enh:name";
 }
 description
 "Defines a reference to a port set.";
 }

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 18

 typedef protocol-set-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:protocol-sets"
 + "/acl-enh:protocol-set/acl-enh:name";
 }
 description
 "Defines a reference to a protocol set.";
 }

 typedef icmpv4-type-set-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:icmpv4-type-sets"
 + "/acl-enh:set/acl-enh:name";
 }
 description
 "Defines a reference to an ICMPv4 type set.";
 }

 typedef icmpv6-type-set-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:icmpv6-type-sets"
 + "/acl-enh:set/acl-enh:name";
 }
 description
 "Defines a reference to an ICMPv6 type set.";
 }

 typedef alias-ref {
 type leafref {
 path "/acl:acls/acl-enh:defined-sets/acl-enh:aliases"
 + "/acl-enh:alias/acl-enh:name";
 }
 description
 "Defines a reference to an alias.";
 }

 grouping tcp-flags {
 description
 "Operations on TCP flags.";
 leaf operator {
 type operator;
 description
 "How to interpret the TCP flags.";
 }
 choice mode {
 description
 "Choice of how flags are indicated.";
 case explicit {
 leaf-list explicit-tcp-flag {
 type identityref {
 base acl-enh:tcp-flag;
 }
 description
 "An explicit list of the TCP flags that are to be
 matched.";
 }
 }
 case builtin {

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 19

 leaf bitmask {
 type uint16;
 description
 "The bitmask matches the last 4 bits of byte 13
 and byte 14 of the TCP header.
 For clarity, the 4 bits of byte 12
 corresponding to the TCP data offset field are not
 included in any matching. Assigned TCP flags
 and their position are maintained in the IANA
 'Transmission Control Protocol (TCP) Parameters'
 registry group.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP),
 Section 3.1
 <https://www.iana.org/assignments/tcp-parameters>";
 }
 }
 }
 }

 grouping fragment-fields {
 description
 "Operations on fragment types.";
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the fragment type.";
 }
 leaf type {
 type fragment-type;
 description
 "Specifies what fragment type to look for.";
 }
 }

 grouping mpls-match-parameters-config {
 description
 "Parameters for the configuration of MPLS match rules.";
 leaf traffic-class {
 type uint8 {
 range "0..7";
 }
 description
 "The value of the MPLS Traffic Class (TC) bits,
 formerly known as the EXP bits.";
 }
 leaf label-position {
 type identityref {
 base acl-enh:label-position;
 }
 description
 "Position of the label.";
 }
 leaf upper-label-range {
 type rt-types:mpls-label;
 description
 "Match MPLS label value on the MPLS header.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 20

 The usage of this field indicates the upper
 range value in the top of the stack. This
 label value does not include the encodings
 of Traffic Class and TTL.";
 reference
 "RFC 3032: MPLS Label Stack Encoding";
 }
 leaf lower-label-range {
 type rt-types:mpls-label;
 description
 "Match MPLS label value on the MPLS header.
 The usage of this field indicates the lower
 range value in the top of the stack.
 This label value does not include the
 encodings of Traffic Class and TTL.";
 reference
 "RFC 3032: MPLS Label Stack Encoding";
 }
 leaf label-block-name {
 type string;
 description
 "Reference to a label block predefined in the
 implementation.";
 }
 leaf ttl-value {
 type uint8;
 description
 "Time-to-live MPLS packet value match.";
 reference
 "RFC 3032: MPLS Label Stack Encoding";
 }
 }

 grouping payload-match {
 description
 "Operations on payload match.";
 leaf offset {
 type identityref {
 base acl-enh:offset-type;
 }
 description
 "Indicates the payload offset. This will indicate
 the position of the data in the packet to use for
 the match.";
 }
 leaf length {
 type uint16;
 units "bytes";
 description
 "Indicates the number of bytes to ignore, starting from
 the offset, to perform the pattern match.";
 }
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the pattern match.";
 }

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 21

 leaf pattern {
 type binary;
 description
 "The binary pattern to match against starting.
 The match starts from the byte indicated by
 'offset' + length'.";
 }
 }

 grouping alias {
 description
 "Specifies an alias.";
 leaf-list vlan {
 type uint16;
 description
 "VLAN of the alias.";
 reference
 "IEEE Std 802.1Q: Bridges and Bridged Networks";
 }
 leaf-list prefix {
 type inet:ip-prefix;
 description
 "IPv4 or IPv6 prefix of the alias.";
 }
 list port-range {
 key "lower-port";
 description
 "Port range. When only lower-port is
 present, it represents a single port number.";
 leaf lower-port {
 type inet:port-number;
 mandatory true;
 description
 "Lower port number of the port range.";
 }
 leaf upper-port {
 type inet:port-number;
 must '. >= ../lower-port' {
 error-message
 "The upper-port number must be greater than
 or equal to the lower-port number.";
 }
 description
 "Upper port number of the port range.";
 }
 }
 leaf-list protocol {
 type uint8;
 description
 "Identifies the target protocol number.
 For example, 6 for TCP or 17 for UDP.";
 }
 leaf-list fqdn {
 type inet:domain-name;
 description
 "Fully Qualified Domain Name (FQDN) identifying the target.";
 }
 leaf-list uri {

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 22

 type inet:uri;
 description
 "URI identifying the target.";
 }
 }

 grouping icmpv4-header-fields {
 description
 "Collection of ICMPv4 header fields that can be
 used to set up a match filter.";
 leaf type {
 type iana-icmpv4-types:icmpv4-type;
 description
 "Also known as control messages.";
 reference
 "RFC 792: Internet Control Message Protocol.";
 }
 leaf code {
 type uint8;
 description
 "ICMP subtype.";
 reference
 "RFC 792: Internet Control Message Protocol.";
 }
 leaf rest-of-header {
 type binary;
 description
 "Unbounded in length, the contents vary based on the
 ICMP type and code.";
 reference
 "RFC 792: Internet Control Message Protocol";
 }
 }

 grouping icmpv6-header-fields {
 description
 "Collection of ICMPv6 header fields that can be
 used to set up a match filter.";
 leaf type {
 type iana-icmpv6-types:icmpv6-type;
 description
 "Also known as control messages.";
 reference
 "RFC 4443: Internet Control Message Protocol (ICMPv6)
 for Internet Protocol Version 6 (IPv6)
 Specification.";
 }
 leaf code {
 type uint8;
 description
 "ICMP code.";
 reference
 "RFC 4443: Internet Control Message Protocol (ICMPv6)
 for Internet Protocol Version 6 (IPv6)
 Specification.";
 }
 leaf rest-of-header {
 type binary;

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 23

 description
 "Unbounded in length, the contents vary based on the
 ICMP type and code. Also referred to as 'Message Body'
 in ICMPv6.";
 reference
 "RFC 4443: Internet Control Message Protocol (ICMPv6)
 for Internet Protocol Version 6 (IPv6)
 Specification.";
 }
 }

 grouping acl-complementary-actions {
 description
 "Collection of complementary ACL actions.";
 container log-action {
 description
 "Container for defining log actions.";
 leaf log-type {
 type identityref {
 base acl-enh:log-types;
 }
 description
 "The type of log action to be performed.";
 }
 leaf log-id {
 when "derived-from-or-self(../log-type, "
 + "'acl-enh:local-log')" {
 description
 "Name of the log file updated when type is 'local-log'.";
 }
 type string;
 description
 "The name of the counter action.";
 }
 }
 container counter-action {
 description
 "Container for defining counter actions.";
 leaf counter-type {
 type identityref {
 base acl-enh:counter-type;
 }
 description
 "The type of counter action to be performed.";
 }
 leaf-list counter-name {
 when "derived-from-or-self(../counter-type, "
 + "'acl-enh:counter-name')" {
 description
 "Name for the counter or variable to update when
 'counter-type' is 'counter-name'.";
 }
 type string;
 description
 "List of possible variables or counter names to
 update based on match criteria.";
 }
 }

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 24

 }

 grouping ipv4-prefix-sets {
 description
 "Data definitions for a list of IPv4 prefixes,
 which are matched as part of a policy.";
 list prefix-set {
 key "name";
 description
 "List of the defined prefix sets.";
 leaf name {
 type string;
 description
 "Name of the prefix set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf description {
 type string;
 description
 "Defined set description.";
 }
 leaf-list prefix {
 type inet:ipv4-prefix;
 description
 "List of IPv4 prefixes to be used in match
 conditions.";
 }
 }
 }

 grouping ipv6-prefix-sets {
 description
 "Data definitions for a list of IPv6 prefixes, which are
 matched as part of a policy.";
 list prefix-set {
 key "name";
 description
 "List of the defined prefix sets.";
 leaf name {
 type string;
 description
 "Name of the prefix set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf description {
 type string;
 description
 "A textual description of the prefix list.";
 }
 leaf-list prefix {
 type inet:ipv6-prefix;
 description
 "List of IPv6 prefixes to be used in match conditions.";
 }
 }
 }

 grouping port-sets {

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 25

 description
 "Data definitions for a list of ports, which can
 be matched in policies.";
 list port-set {
 key "name";
 description
 "List of port set definitions.";
 leaf name {
 type string;
 description
 "Name of the port set -- this is used as a label to
 reference the set in match conditions.";
 }
 list port {
 key "id";
 description
 "Port numbers along with the operator on which to
 match.";
 leaf id {
 type string;
 description
 "Identifier of the list of port numbers.";
 }
 choice port {
 description
 "Choice of specifying the port number or referring to a
 group of port numbers.";
 container port-range-or-operator {
 description
 "Indicates a set of ports.";
 uses packet-fields:port-range-or-operator;
 }
 }
 }
 }
 }

 grouping protocol-sets {
 description
 "Data definitions for a list of protocols, which can be
 matched in policies.";
 list protocol-set {
 key "name";
 description
 "List of protocol set definitions.";
 leaf name {
 type string;
 description
 "Name of the protocols set -- this is used as a
 label to reference the set in match conditions.";
 }
 leaf-list protocol {
 type union {
 type uint8;
 type string;
 }
 description
 "Value of the protocol set.";

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 26

 }
 }
 }

 grouping icmpv4-type-sets {
 description
 "Data definitions for a list of ICMPv4 types, which can be
 matched in policies.";
 list set {
 key "name";
 description
 "List of ICMPv4 type set definitions.";
 leaf name {
 type string;
 description
 "Name of the ICMPv4 type set -- this is used as a label
 to reference the set in match conditions.";
 }
 list icmpv4-type {
 key "type";
 description
 "Includes a list of ICMPv4 types.";
 uses icmpv4-header-fields;
 }
 }
 }

 grouping icmpv6-type-sets {
 description
 "Data definitions for a list of ICMPv6 types, which can be
 matched in policies.";
 list set {
 key "name";
 description
 "List of ICMP type set definitions.";
 leaf name {
 type string;
 description
 "Name of the ICMPv6 type set -- this is used as a label
 to reference the set in match conditions.";
 }
 list icmpv6-type {
 key "type";
 description
 "Includes a list of ICMPv6 types.";
 uses icmpv6-header-fields;
 }
 }
 }

 grouping aliases {
 description
 "Grouping for a set of aliases.";
 list alias {
 key "name";
 description
 "List of aliases.";
 leaf name {

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 27

 type string;
 description
 "The name of the alias.";
 }
 uses alias;
 }
 }

 grouping defined-sets {
 description
 "Predefined sets of attributes used in policy match
 statements.";
 container ipv4-prefix-sets {
 description
 "Data definitions for a list of IPv4 or IPv6
 prefixes, which are matched as part of a policy.";
 uses ipv4-prefix-sets;
 }
 container ipv6-prefix-sets {
 description
 "Data definitions for a list of IPv6 prefixes, which are
 matched as part of a policy.";
 uses ipv6-prefix-sets;
 }
 container port-sets {
 description
 "Data definitions for a list of ports, which can
 be matched in policies.";
 uses port-sets;
 }
 container protocol-sets {
 description
 "Data definitions for a list of protocols, which can be
 matched in policies.";
 uses protocol-sets;
 }
 container icmpv4-type-sets {
 description
 "Data definitions for a list of ICMPv4 types, which can be
 matched in policies.";
 uses icmpv4-type-sets;
 }
 container icmpv6-type-sets {
 description
 "Data definitions for a list of ICMPv6 types, which can be
 matched in policies.";
 uses icmpv6-type-sets;
 }
 container aliases {
 description
 "Top-level container for aliases.";
 uses aliases;
 }
 }

 augment "/acl:acls" {
 description
 "predefined sets.";

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 28

 container defined-sets {
 description
 "Predefined sets of attributes used in policy match
 statements.";
 uses defined-sets;
 nacm:default-deny-write;
 }
 }

 augment "/acl:acls/acl:acl/acl:aces/acl:ace"
 + "/acl:matches" {
 description
 "Adds a match type based on the payload.";
 choice payload {
 description
 "Matches based upon a prefix pattern.";
 container pattern {
 if-feature "match-on-payload";
 description
 "Indicates the rule to perform the payload-based match.";
 uses payload-match;
 }
 }
 choice alias {
 description
 "Matches based upon aliases.";
 leaf-list alias-name {
 type alias-ref;
 description
 "Indicates one or more aliases.";
 }
 }
 choice mpls {
 description
 "Matches against MPLS headers, for example, label
 values.";
 container mpls-values {
 if-feature "match-on-mpls";
 description
 "Provides the rule set that matches MPLS headers.";
 uses mpls-match-parameters-config;
 }
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l2" {
 description
 "Adds a match type based on MAC VLAN and I-SID filters.";
 container vlan-filter {
 if-feature "match-on-vlan-filter";
 description
 "Indicates how to handle MAC VLANs.";
 leaf frame-type {
 type string;
 description
 "Entering the frame type allows the
 filter to match a specific type of frame format.";

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 29

 }
 choice vlan-type {
 description
 "VLAN definition from range or operator.";
 case range {
 leaf lower-vlan {
 type uint16;
 must '. <= ../upper-vlan' {
 error-message
 "The lower-vlan must be less than or equal to
 the upper-vlan.";
 }
 mandatory true;
 description
 "Lower boundary for a VLAN.";
 }
 leaf upper-vlan {
 type uint16;
 mandatory true;
 description
 "Upper boundary for a VLAN.";
 }
 }
 case operator {
 leaf operator {
 type packet-fields:operator;
 default "eq";
 description
 "Operator to be applied on the VLAN below.";
 }
 leaf-list vlan {
 type uint16;
 description
 "VLAN number along with the operator on which to
 match.";
 reference
 "IEEE Std 802.1Q: Bridges and Bridged Networks";
 }
 }
 }
 }
 container isid-filter {
 if-feature "match-on-isid-filter";
 description
 "Indicates how to handle I-SID filters. The
 I-component is responsible for mapping customer
 Ethernet traffic to the appropriate I-SID.";
 choice isid-type {
 description
 "I-SID definition from range or operator.";
 case range {
 leaf lower-isid {
 type uint16;
 must '. <= ../upper-isid' {
 error-message
 "The lower-isid must be less than or equal to
 the upper-isid.";
 }

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 30

 mandatory true;
 description
 "Lower boundary for an I-SID.";
 }
 leaf upper-isid {
 type uint16;
 mandatory true;
 description
 "Upper boundary for an I-SID.";
 }
 }
 case operator {
 leaf operator {
 type packet-fields:operator;
 default "eq";
 description
 "Operator to be applied on the I-SID below.";
 }
 leaf-list isid {
 type uint16;
 description
 "I-SID number along with the operator on which to
 match.";
 reference
 "IEEE 802.1ah: Provider Backbone Bridges";
 }
 }
 }
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l3/acl:ipv4/acl:ipv4" {
 description
 "Handle non-initial and initial fragments for IPv4 packets.";
 container ipv4-fragment {
 must 'not(../acl:flags)' {
 error-message
 "Either flags or fragment should be provided, but not
 both.";
 }
 description
 "Indicates how to handle IPv4 fragments.";
 uses fragment-fields;
 }
 leaf source-ipv4-prefix-list {
 type ipv4-prefix-set-ref;
 description
 "A reference to an IPv4 prefix list to match the source
 address.";
 }
 leaf destination-ipv4-prefix-list {
 type ipv4-prefix-set-ref;
 description
 "A reference to a prefix list to match the destination
 address.";
 }
 leaf protocol-set {

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 31

 type protocol-set-ref;
 description
 "A reference to a protocol set to match the protocol
 field.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l3/acl:ipv6/acl:ipv6" {
 description
 "Handles non-initial and initial fragments for IPv6 packets.";
 container ipv6-fragment {
 description
 "Indicates how to handle IPv6 fragments.";
 uses fragment-fields;
 }
 leaf source-ipv6-prefix-list {
 type ipv6-prefix-set-ref;
 description
 "A reference to a prefix list to match the source address.";
 }
 leaf destination-ipv6-prefix-list {
 type ipv6-prefix-set-ref;
 description
 "A reference to a prefix list to match the destination
 address.";
 }
 leaf protocol-set {
 type protocol-set-ref;
 description
 "A reference to a protocol set to match the next-header
 field.";
 }
 leaf extension-header {
 type iana-ipv6-ext-types:ipv6-extension-header-type;
 description
 "IPv6 extension header value.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l4/acl:tcp/acl:tcp" {
 description
 "Handles TCP flags and port sets.";
 container flags-bitmask {
 must 'not(../acl:flags)' {
 error-message
 "Either flags or flags-bitmask should be provided, but not
 both.";
 }
 description
 "Indicates how to handle TCP flags.";
 uses tcp-flags;
 }
 leaf source-tcp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the source port.";

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 32

 }
 leaf destination-tcp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the destination port.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l4/acl:udp/acl:udp" {
 description
 "Handle UDP port sets.";
 leaf source-udp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the source port.";
 }
 leaf destination-udp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the destination port.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l4/acl:icmp/acl:icmp" {
 description
 "Handle ICMP type sets.";
 leaf icmpv4-set {
 type icmpv4-type-set-ref;
 description
 "A reference to an ICMPv4 type set to match the ICMPv4 type
 field.";
 }
 leaf icmpv6-set {
 type icmpv6-type-set-ref;
 description
 "A reference to an ICMPv6 type set to match the ICMPv6 type
 field.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:actions" {
 description
 "Complementary actions including rate-limit action.";
 uses acl-complementary-actions;
 leaf rate-limit {
 when "../acl:forwarding = 'acl:accept'" {
 description
 "Rate-limit valid only when the accept action is used.";
 }
 type decimal64 {
 fraction-digits 2;
 }
 units "bytes per second";
 description
 "Indicates a rate-limit for the matched traffic.";

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 33

 }
 }
}

<CODE ENDS>

'defined-sets':

'defined-sets':

5. Security Considerations
This section is modeled after the template described in .

The "ietf-acl-enh" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have to use a secure transport layer (e.g., SSH , TLS , and QUIC

) and have to use mutual authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/
deletable (i.e., "config true", which is the default). All writable data nodes are likely to be
reasonably sensitive or vulnerable in some network environments. Write operations (e.g., edit-
config) and delete operations to these data nodes without proper protection or authentication
can have a negative effect on network operations. The following subtrees and data nodes have
particular sensitivities/vulnerabilities:

These lists specify a set of IP addresses, port numbers, protocols, ICMP types, and
aliases. Similar to , unauthorized write access to these lists can allow intruders to
modify the entries to permit traffic that should not be permitted or deny traffic that should be
permitted. The former may result in a DoS attack or compromise a device. The latter may
result in a DoS attack.

These sets are defined with "nacm:default-deny-write" tagging.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable
in some network environments. It is thus important to control read access (e.g., via get, get-
config, or notification) to these data nodes. Specifically, the following subtrees and data nodes
have particular sensitivities/vulnerabilities:

Unauthorized read access of these lists will allow an attacker to identify the
actual resources that are bound to ACLs. Likewise, access to this information will help an
attacker to better scope its attacks to target resources that are specific to a given network
instead of performing random scans. Also, disclosing some of this information (e.g., IP
addresses of core routers) may nullify the effect of topology-hiding strategies in some
networks.

Section 3.7.1 of [YANG-GUIDELINES]

[RFC6241] [RFC8040]
[RFC4252] [RFC8446]

[RFC9000]

[RFC8341]

[RFC8519]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 34

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-28#section-3.7.1

The document defines a match policy based on a pattern that can be observed in a packet. For
example, such a policy can be combined with header-based matches in the context of DDoS
mitigation. Filtering based on a pattern match is deterministic for packets with unencrypted
data. However, the efficiency for encrypted packets depends on the presence of an unvarying
pattern. Readers may also refer to for security considerations related to
Network Security Functions (NSFs) that apply packet content matching.

The YANG modules "iana-icmpv4-types", "iana-icmpv6-types", and "iana-ipv6-ext-types" define a
set of identities, types, and groupings. These nodes are intended to be reused by other YANG
modules. Each module by itself does not expose any data nodes that are writable, data nodes that
contain read-only state, or RPCs. As such, there are no additional security issues related to these
YANG modules that need to be considered.

Section 11 of [RFC8329]

6. IANA Considerations

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

6.1. URI Registrations
IANA has registered the following URIs in the "ns" registry within the "IETF XML Registry"

:

urn:ietf:params:xml:ns:yang:ietf-acl-enh
The IESG

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:iana-icmpv4-types
The IESG

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:iana-icmpv6-types
The IESG

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:iana-ipv6-ext-types
The IESG

N/A; the requested URI is an XML namespace.

[RFC3688]

Name:
Maintained by IANA:
Namespace:

6.2. YANG Module Name Registrations
IANA has registered the following YANG modules in the "YANG Module Names" registry

 within the "YANG Parameters" registry group.

ietf-acl-enh
N

urn:ietf:params:xml:ns:yang:ietf-acl-enh

[RFC6020]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 35

https://www.rfc-editor.org/rfc/rfc8329#section-11

Prefix:
Reference:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

acl-enh
RFC 9899

iana-icmpv4-types
Y

urn:ietf:params:xml:ns:yang:iana-icmpv4-types
iana-icmpv4-types

RFC 9899

iana-icmpv6-types
Y

urn:ietf:params:xml:ns:yang:iana-icmpv6-types
iana-icmpv6-types

RFC 9899

iana-ipv6-ext-types
Y

urn:ietf:params:xml:ns:yang:iana-ipv6-ext-types
iana-ipv6-ext-types

RFC 9899

6.3. Considerations for IANA-Maintained Modules

"enum":

"value":

6.3.1. ICMPv4 Types IANA Module

This document defines the initial version of the IANA-maintained "iana-icmpv4-types" YANG
module. The most recent version of the YANG module is available in the "YANG Parameters"
registry group .

IANA has added this note to the registry:

New values must not be directly added to the "iana-icmpv4-types" YANG module. They
must instead be added to the "ICMP Type Numbers" registry .

When a value is added to the "ICMP Type Numbers" registry, a new "enum" statement must be
added to the "iana-icmpv4-types" YANG module. The "enum" statement, and substatements
thereof, should be defined as follows:

Replicates the name from the registry with all illegal characters (e.g., spaces) are
striped.

Contains the decimal value of the IANA-assigned value.

[IANA-YANG-PARAMETERS]

[IANA-ICMPv4]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 36

"status":

"description":

"reference":

Included only if a registration has been deprecated or obsoleted. IANA "deprecated"
maps to YANG status "deprecated", and IANA "obsolete" maps to YANG status "obsolete".

Replicates the name from the registry.

Replicates the reference(s) from the registry with the title of the document(s)
added.

Unassigned, reserved, or values styled like those in are not present in the module.

When the "iana-icmpv4-types" YANG module is updated, a new "revision" statement with a
unique revision date must be added in front of the existing revision statements.

IANA has added this note to "ICMP Type Numbers" registry and listed this
document as an additional reference for the registry:

When this registry is modified, the YANG module "iana-icmpv4-types"
 must be updated as defined in RFC 9899.

[RFC3692]

[IANA-ICMPv4]

[IANA-YANG-
PARAMETERS]

"enum":

"value":

"status":

"description":

"reference":

6.3.2. ICMPv6 Types IANA Module

This document defines the initial version of the IANA-maintained "iana-icmpv6-types" YANG
module. The most recent version of the YANG module is available in the "YANG Parameters"
registry group .

IANA has added this note to the registry:

New values must not be directly added to the "iana-icmpv6-types" YANG module. They
must instead be added to the "ICMPv6 "type" Numbers" registry .

When a value is added to the "ICMPv6 "type" Numbers" registry, a new "enum" statement must
be added to the "iana-icmpv6-types" YANG module. The "enum" statement, and substatements
thereof, should be defined as follows:

Replicates the name from the registry with all illegal characters (e.g., spaces) striped.

Contains the decimal value of the IANA-assigned value.

Included only if a registration has been deprecated or obsoleted. IANA "deprecated"
maps to YANG status "deprecated", and IANA "obsolete" maps to YANG status "obsolete".

Replicates the name from the registry.

Replicates the reference(s) from the registry with the title of the document(s)
added.

[IANA-YANG-PARAMETERS]

[IANA-ICMPv6]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 37

Unassigned, reserved, or private experimentation values are not present in the module.

When the "iana-icmpv6-types" YANG module is updated, a new "revision" statement with a
unique revision date must be added in front of the existing revision statements.

IANA has added this note to the "ICMPv6 "type" Numbers" registry and listed this
document as an additional reference for the registry:

When this registry is modified, the YANG module "iana-icmpv6-types"
 must be updated as defined in RFC 9899.

[IANA-ICMPv6]

[IANA-YANG-
PARAMETERS]

"enum":

"value":

"status":

"description":

"reference":

6.3.3. IPv6 Extension Header Types IANA Module

This document defines the initial version of the IANA-maintained "iana-ipv6-ext-types" YANG
module. The most recent version of the YANG module is available in the "YANG Parameters"
registry group .

IANA has added this note to the registry:

New values must not be directly added to the "iana-ipv6-ext-types" YANG module. They
must instead be added to the "IPv6 Extension Header Types" registry .

When a value is added to the "IPv6 Extension Header Types" registry, a new "enum" statement
must be added to the "iana-ipv6-ext-types" YANG module. The "enum" statement, and
substatements thereof, should be defined as follows

Replicates the description from the registry with all spaces striped.

Contains the decimal value of the IANA-assigned value.

Included only if a registration has been deprecated or obsoleted. IANA "deprecated"
maps to YANG status "deprecated", and IANA "obsolete" maps to YANG status "obsolete".

Replicates the description from the registry.

Replicates the reference(s) from the registry with the title of the document(s)
added.

Unassigned or reserved values are not present in the module.

When the "iana-ipv6-ext-types" YANG module is updated, a new "revision" statement with a
unique revision date must be added in front of the existing revision statements.

IANA has added this note to the "IPv6 Extension Header Types" registry and listed
this document as an additional reference for the registry:

[IANA-YANG-PARAMETERS]

[IANA-IPv6]

[IANA-IPv6]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 38

When this registry is modified, the YANG module "iana-ipv6-ext-types"
 must be updated as defined in RFC 9899.

[IANA-YANG-
PARAMETERS]

7. References

[IANA-ICMPv4]

[IANA-ICMPv6]

[IANA-IPv6]

[RFC0792]

[RFC2119]

[RFC3032]

[RFC3688]

[RFC4443]

[RFC5462]

[RFC6020]

[RFC6991]

[RFC7950]

7.1. Normative References

, ,
.

, ,
.

, ,
.

, , , ,
, September 1981, .

, , ,
, , March 1997,
.

, , , , , , and ,
, , , January 2001,

.

, , , , ,
January 2004, .

, , and ,
, ,

, , March 2006,
.

 and ,
, ,

, February 2009, .

,
, , , October

2010, .

, , ,
, July 2013, .

, , ,
, August 2016, .

IANA "ICMP Type Numbers" <https://www.iana.org/assignments/icmp-
parameters>

IANA "ICMPv6 "type" Numbers" <https://www.iana.org/assignments/icmpv6-
parameters>

IANA "IPv6 Extension Header Types" <https://www.iana.org/assignments/ipv6-
parameters>

Postel, J. "Internet Control Message Protocol" STD 5 RFC 792 DOI 10.17487/
RFC0792 <https://www.rfc-editor.org/info/rfc792>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rosen, E. Tappan, D. Fedorkow, G. Rekhter, Y. Farinacci, D. Li, T. A. Conta
"MPLS Label Stack Encoding" RFC 3032 DOI 10.17487/RFC3032
<https://www.rfc-editor.org/info/rfc3032>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Conta, A. Deering, S. M. Gupta, Ed. "Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification" STD 89 RFC
4443 DOI 10.17487/RFC4443 <https://www.rfc-editor.org/info/
rfc4443>

Andersson, L. R. Asati "Multiprotocol Label Switching (MPLS) Label Stack
Entry: "EXP" Field Renamed to "Traffic Class" Field" RFC 5462 DOI 10.17487/
RFC5462 <https://www.rfc-editor.org/info/rfc5462>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 39

https://www.iana.org/assignments/icmp-parameters
https://www.iana.org/assignments/icmp-parameters
https://www.iana.org/assignments/icmpv6-parameters
https://www.iana.org/assignments/icmpv6-parameters
https://www.iana.org/assignments/ipv6-parameters
https://www.iana.org/assignments/ipv6-parameters
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3032
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc5462
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7950

[RFC8174]

[RFC8200]

[RFC8294]

[RFC8341]

[RFC8342]

[RFC8519]

[RFC9293]

, ,
, , , May 2017,

.

 and , ,
, , , July 2017,

.

, , , , and ,
, , , December 2017,

.

 and , ,
, , , March 2018,

.

, , , , and ,
, , ,

March 2018, .

, , , and ,
, , , March

2019, .

, , , ,
, August 2022, .

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

Liu, X. Qu, Y. Lindem, A. Hopps, C. L. Berger "Common YANG Data Types
for the Routing Area" RFC 8294 DOI 10.17487/RFC8294 <https://
www.rfc-editor.org/info/rfc8294>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Jethanandani, M. Agarwal, S. Huang, L. D. Blair "YANG Data Model for
Network Access Control Lists (ACLs)" RFC 8519 DOI 10.17487/RFC8519

<https://www.rfc-editor.org/info/rfc8519>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI
10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

[IANA-TCP-FLAGS]

[IANA-YANG-PARAMETERS]

[IEEE-802-1ah]

[IEEE802.1Qcp]

[RFC3692]

7.2. Informative References

, ,
.

, ,
.

,
,

, , August 2008,
.

,
, ,

, September 2018,
.

, ,
, , , January 2004,

.

IANA "Transmission Control Protocol (TCP) Parameters" <https://
www.iana.org/assignments/tcp-parameters>

IANA "YANG Parameters" <https://www.iana.org/assignments/
yang-parameters>

IEEE "IEEE Standard for Local and metropolitan area networks -- Virtual
Bridged Local Area Networks Amendment 7: Provider Backbone Bridges" IEEE
Std 802.1ah-2008 DOI 10.1109/IEEESTD.2008.4602826 <https://
doi.org/10.1109/IEEESTD.2008.4602826>

IEEE "IEEE Standard for Local and metropolitan area networks--Bridges and
Bridged Networks--Amendment 30: YANG Data Model" IEEE Std 802.1Qcp-2018
DOI 10.1109/IEEESTD.2018.8467507 <https://doi.org/10.1109/
IEEESTD.2018.8467507>

Narten, T. "Assigning Experimental and Testing Numbers Considered Useful"
BCP 82 RFC 3692 DOI 10.17487/RFC3692 <https://www.rfc-
editor.org/info/rfc3692>

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 40

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8519
https://www.rfc-editor.org/info/rfc9293
https://www.iana.org/assignments/tcp-parameters
https://www.iana.org/assignments/tcp-parameters
https://www.iana.org/assignments/yang-parameters
https://www.iana.org/assignments/yang-parameters
https://doi.org/10.1109/IEEESTD.2008.4602826
https://doi.org/10.1109/IEEESTD.2008.4602826
https://doi.org/10.1109/IEEESTD.2018.8467507
https://doi.org/10.1109/IEEESTD.2018.8467507
https://www.rfc-editor.org/info/rfc3692
https://www.rfc-editor.org/info/rfc3692

[RFC4252]

[RFC6241]

[RFC7209]

[RFC8040]

[RFC8329]

[RFC8340]

[RFC8446]

[RFC8955]

[RFC8956]

[RFC9000]

[RFC9132]

[YANG-GUIDELINES]

[YANG-XSLT]

 and , ,
, , January 2006,
.

, , , and ,
, , ,

June 2011, .

, , , , , and ,
, , , May

2014, .

, , and , , ,
, January 2017, .

, , , , and ,
, , ,

February 2018, .

 and , , , ,
, March 2018, .

, , ,
, August 2018, .

, , , , and ,
, , , December 2020,

.

, , and ,
, , , December 2020,

.

 and ,
, , , May 2021,

.

, , and ,
, ,

, September 2021, .

, , and ,
, ,

, 5 June 2025,
.

, , December 2021,
.

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Sajassi, A. Aggarwal, R. Uttaro, J. Bitar, N. Henderickx, W. A. Isaac
"Requirements for Ethernet VPN (EVPN)" RFC 7209 DOI 10.17487/RFC7209

<https://www.rfc-editor.org/info/rfc7209>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Lopez, D. Lopez, E. Dunbar, L. Strassner, J. R. Kumar "Framework for
Interface to Network Security Functions" RFC 8329 DOI 10.17487/RFC8329

<https://www.rfc-editor.org/info/rfc8329>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Loibl, C. Hares, S. Raszuk, R. McPherson, D. M. Bacher "Dissemination of
Flow Specification Rules" RFC 8955 DOI 10.17487/RFC8955
<https://www.rfc-editor.org/info/rfc8955>

Loibl, C., Ed. Raszuk, R., Ed. S. Hares, Ed. "Dissemination of Flow
Specification Rules for IPv6" RFC 8956 DOI 10.17487/RFC8956
<https://www.rfc-editor.org/info/rfc8956>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Boucadair, M., Ed. Shallow, J. T. Reddy.K "Distributed Denial-of-Service
Open Threat Signaling (DOTS) Signal Channel Specification" RFC 9132 DOI
10.17487/RFC9132 <https://www.rfc-editor.org/info/rfc9132>

Bierman, A. Boucadair, M. Q. Wu "Guidelines for Authors and
Reviewers of Documents Containing YANG Data Models" Work in Progress
Internet-Draft, draft-ietf-netmod-rfc8407bis-28 <https://
datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-28>

"iana-yang" commit 3a6cb69 <https://github.com/llhotka/iana-
yang>

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 41

https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7209
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8329
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8955
https://www.rfc-editor.org/info/rfc8956
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9132
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-28
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-28
https://github.com/llhotka/iana-yang
https://github.com/llhotka/iana-yang

Appendix A. Problem Statement and Gap Analysis

A.1. Suboptimal Configuration: Lack of Support for Lists of Prefixes
IP prefix-related data nodes (e.g., "destination-ipv4-network" or "destination-ipv6-network") do
not support handling a list of IP prefixes, which may then lead to having to support large
numbers of ACL entries in a configuration file.

The same issue is encountered when ACLs have to be in place to mitigate DDoS attacks that
involve a set of sources (e.g.,). The situation is even worse when both a list of sources
and destination prefixes are involved in the filtering.

Figure 3 shows an example of the required ACL configuration for filtering traffic from two
prefixes.

[RFC9132]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 42

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "first-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:1::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 },
 {
 "name": "second-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:c::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 43

Such a configuration is suboptimal for both:

network controllers that need to manipulate large files, as all or a subset for this
configuration will need to be passed to the underlying network devices, and
devices that may receive such a configuration and thus will need to maintain it locally.

Figure 3: Example Illustrating Suboptimal Use of the ACL Model with a Prefix List (Message Body)

 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
}

•

•

Prefix sets:

Protocol sets:

Port number sets:

ICMP sets:

A.2. Manageability: Impossibility of Using Aliases or Defined Sets
The same approach as the one discussed for IP prefixes can be generalized by introducing the
concept of "aliases" or "defined sets".

The defined sets are reusable definitions across several ACLs. Each category is modeled in YANG
as a list of parameters related to the class it represents. The following sets can be considered:

Used to create lists of IPv4 or IPv6 prefixes.

Used to create a list of protocols.

Used to create lists of TCP or UDP port values (or any other transport
protocol that makes uses of port numbers). The identity of the protocols is identified by the
protocol set, if present. Otherwise, a set applies to any protocol.

Used to create lists of ICMP-based filters. This applies only when the protocol is set
to ICMP or ICMPv6.

Aliases may also be considered to manage resources that are identified by a combination of
various parameters (e.g., prefix, protocol, port number, FQDN, or VLAN IDs). Note that some
aliases can be provided by decomposing them into separate sets.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 44

A.3. Bind ACLs to Devices, Not Only Interfaces
In the context of network management, an ACL may be enforced in many network locations. As
such, the ACL module should allow for binding an ACL to multiple devices, not only (abstract)
interfaces.

Thus, the ACL name must be unique at the scale of the network, but the same name may be used
in many devices when enforcing node-specific ACLs.

A.4. Partial or Lack of IPv4/IPv6 Fragment Handling
 does not support fragment handling for IPv6 but offers a partial support for IPv4

through the use of 'flags'. Nevertheless, the use of 'flags' is problematic since it does not allow a
bitmask to be defined. For example, setting other bits not covered by the 'flags' filtering clause in
a packet will allow that packet to get through (because it won't match the ACE).

Defining a new IPv4/IPv6 matching field called 'fragment' is thus required to efficiently handle
fragment-related filtering rules.

[RFC8519]

A.5. Suboptimal TCP Flags Handling
 supports including flags in the TCP match fields; however, that structure does not

support matching operations as those supported in BGP Flow Spec. Defining this field to be
defined as a flag bitmask together with a set of operations is meant to efficiently handle TCP
flags filtering rules.

[RFC8519]

A.6. Rate-Limit Action
 specifies that forwarding actions can be 'accept' (i.e., accept matching traffic),

'drop' (i.e., drop matching traffic without sending any ICMP error message), or 'reject' (i.e., drop
matching traffic and send an ICMP error message to the source). However, there are situations
where the matching traffic can be accepted, but with a rate-limit policy. This capability is not
supported by .

[RFC8519]

[RFC8519]

A.7. Payload-Based Filtering
Some transport protocols use existing protocols (e.g., TCP or UDP) as substrate. The match
criteria for such protocols may rely upon the 'protocol' under 'l3', TCP/UDP match criteria, part
of the TCP/UDP payload, or a combination thereof. does not support matching based
on the payload.

Likewise, the ACL model defined in does not support filtering of encapsulated traffic.

[RFC8519]

[RFC8519]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 45

A.8. Reuse the Content of ACLs Across Several Devices
Having a global network view of the ACLs is highly valuable for service providers. An ACL could
be defined and applied based on the network topology hierarchy. Therefore, an ACL can be
defined at the network level, and then that same ACL can be used in (or referenced to) several
devices (including termination points) within the same network.

This network/device differentiation of ACLs introduces several new requirements, for example:

An ACL name can be used at both network and device levels.
An ACL content updated at the network level should imply a transaction that updates the
relevant content in all the nodes using this ACL.
ACLs defined at the device level have a local meaning for the specific node.
A device can be associated with a router, a VRF, a logical system, or a virtual node. ACLs can
be applied in physical and logical infrastructure.

•
•

•
•

A.9. Match MPLS Headers
The ACLs can be used to create rules to match MPLS fields on a packet. does not
support such function.

[RFC8519]

Appendix B. Examples
This section provides a few examples to illustrate the use of the enhanced ACL module ("ietf-acl-
enh").

B.1. TCP Flags Handling
Figure 4 shows an example of the message body of a request to install a filter to discard
incoming TCP messages having all flags unset.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 46

Figure 4: Example of an ACL to Deny TCP Null Attack Messages (Request Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "tcp-flags-example",
 "aces": {
 "ace": [
 {
 "name": "null-attack",
 "matches": {
 "tcp": {
 "ietf-acl-enh:flags-bitmask": {
 "operator": "not any",
 "bitmask": 4095
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }
]
 }
 }
]
 }
}

"drop-all-fragments" ACE:

"allow-dns-packets" ACE:

B.2. Fragments Handling
Figure 5 shows the content of a POST request to allow the traffic destined to 198.51.100.0/24 and
UDP port number 53, but to drop all fragmented packets. The following ACEs are defined (in this
order):

discards all fragments.

accepts DNS packets destined to 198.51.100.0/24.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 47

"drop-all-fragments" ACE:

Figure 6 shows an example of the body of a POST request to allow the traffic destined to
2001:db8::/32 and UDP port number 53, but to drop all fragmented packets. The following ACEs
are defined (in this order):

discards all fragments (including atomic fragments). That is, IPv6
packets that include a Fragment header (44) are dropped.

Figure 5: Example Illustrating Candidate Filtering of IPv4 Fragmented Packets (Message Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv4": {
 "ietf-acl-enh:ipv4-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
}

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 48

"allow-dns-packets" ACE: accepts DNS packets destined to 2001:db8::/32.

Figure 6: An Example Illustrating Filtering of IPv6 Fragmented Packets (Message Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv6": {
 "ietf-acl-enh:ipv6-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8::/32"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
}

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 49

B.3. Pattern-Based Filtering
Pattern-based filtering is useful to detect specific patterns, signatures, or encapsulated packets.
Figure 7 shows an example of the message body of a request to install a filter to discard IP-in-IP
encapsulated messages with an inner destination IP address equal to "2001:db8::1". By using the
offset at the end of Layer 3, the rule targets a specific portion of the payload that starts 20 bytes
after the beginning of the data (that is, skipping the first 20 bytes of the inner IPv6 header).

For the reader's convenience, the textual representation of the pattern is used in the example
instead of the binary form.

Figure 7: Example of an ACL to Deny Encapsulated Messages with a Specific Inner Destination
Address (Request Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "pattern-example",
 "aces": {
 "ace": [
 {
 "name": "pattern-1",
 "matches": {
 "ipv6": {
 "protocol": 41
 },
 "ietf-acl-enh:pattern": {
 "offset": "ietf-acl-enh:layer4",
 "length": 20,
 "operator": "match",
 "pattern": "2001:db8::1"
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }
]
 }
 }
]
 }
}

B.4. VLAN Filtering
Figure 8 shows an ACL example to illustrate how to apply a VLAN range filter.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 50

Figure 8: Example of VLAN Filter (Message Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "VLAN_FILTER",
 "aces": {
 "ace": [
 {
 "name": "1",
 "matches": {
 "ietf-acl-enh:vlan-filter": {
 "lower-vlan": 10,
 "upper-vlan": 20
 }
 },
 "actions": {
 "forwarding": "ietf-access-control-list:accept"
 }
 }
]
 }
 }
]
 }
}

B.5. ISID Filtering
Figure 9 shows an ACL example to illustrate the ISID range filtering.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 51

Figure 9: Example ISID Filter (Message Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "test",
 "aces": {
 "ace": [
 {
 "name": "1",
 "matches": {
 "ietf-acl-enh:isid-filter": {
 "lower-isid": 100,
 "upper-isid": 200
 }
 },
 "actions": {
 "forwarding": "ietf-access-control-list:accept"
 }
 }
]
 }
 }
]
 }
}

B.6. Rate-Limit
Figure 10 shows an ACL example to rate-limit incoming SYNs during a SYN flood attack.

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 52

Figure 10: An Example of Rate-Limiting Incoming TCP SYNs (Message Body)

{
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "tcp-flags-example-with-rate-limit",
 "aces": {
 "ace": [
 {
 "name": "rate-limit-syn",
 "matches": {
 "tcp": {
 "ietf-acl-enh:flags-bitmask": {
 "operator": "match",
 "bitmask": 2
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "ietf-acl-enh:rate-limit": "20.00"
 }
 }
]
 }
 }
]
 }
}

Acknowledgments
Many thanks to and for their review and comments on this document.

Thanks to , , , and for their comments
and suggestions.

Thanks to for shepherding this document.

Thanks to for the tsvart review, for the intdir review,
for the yangdoctors review, for the genart review, and and

 for the secdir reviews.

Thanks to , , , , and for the IESG
review.

The IANA-maintained modules were generated using an XSLT stylesheet from the 'iana-yang'
project .

Jon Shallow Miguel Cros

Qiufang Ma Victor Lopez Joe Clarke Mahesh Jethanandani

Lou Berger

David Black Tim Wicinski Per Andersson
Russ Housley Linda Dunbar Sean

Turner

Erik Kline Mike Bishop Éric Vyncke Roman Danyliw Deb Cooley

[YANG-XSLT]

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 53

This work is partially supported by the European Commission under Horizon 2020 Secured
autonomic traffic management for a Tera of SDN flows (Teraflow) project (grant agreement
number 101015857).

Authors' Addresses
Oscar Gonzalez de Dios
Telefonica

oscar.gonzalezdedios@telefonica.comEmail:

Samier Barguil
Nokia

samier.barguil_giraldo@nokia.comEmail:

Mohamed Boucadair
Orange

mohamed.boucadair@orange.comEmail:

Qin Wu
Huawei

bill.wu@huawei.comEmail:

RFC 9899 Enhanced ACLs November 2025

Gonzalez de Dios, et al. Standards Track Page 54

mailto:oscar.gonzalezdedios@telefonica.com
mailto:samier.barguil_giraldo@nokia.com
mailto:mohamed.boucadair@orange.com
mailto:bill.wu@huawei.com

	RFC 9899
	Extensions to the Access Control Lists (ACLs) YANG Model
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overall Structure of the Enhanced ACL Module
	3.1. Tree Structure
	3.2. Defined Sets
	3.3. IPv6 Extension Headers
	3.4. TCP Flags Handling
	3.5. Fragments Handling
	3.6. Payload-Based Filtering
	3.7. Match on MPLS Headers
	3.8. VLAN Filtering
	3.9. Instance Service Identifier (I-SID) Filtering
	3.10. Additional Actions

	4. Enhanced ACL YANG Module
	5. Security Considerations
	6. IANA Considerations
	6.1. URI Registrations
	6.2. YANG Module Name Registrations
	6.3. Considerations for IANA-Maintained Modules
	6.3.1. ICMPv4 Types IANA Module
	6.3.2. ICMPv6 Types IANA Module
	6.3.3. IPv6 Extension Header Types IANA Module

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Problem Statement and Gap Analysis
	A.1. Suboptimal Configuration: Lack of Support for Lists of Prefixes
	A.2. Manageability: Impossibility of Using Aliases or Defined Sets
	A.3. Bind ACLs to Devices, Not Only Interfaces
	A.4. Partial or Lack of IPv4/IPv6 Fragment Handling
	A.5. Suboptimal TCP Flags Handling
	A.6. Rate-Limit Action
	A.7. Payload-Based Filtering
	A.8. Reuse the Content of ACLs Across Several Devices
	A.9. Match MPLS Headers

	Appendix B. Examples
	B.1. TCP Flags Handling
	B.2. Fragments Handling
	B.3. Pattern-Based Filtering
	B.4. VLAN Filtering
	B.5. ISID Filtering
	B.6. Rate-Limit

	Acknowledgments
	Authors' Addresses

