
RFC 9907
Guidelines for Authors and Reviewers of Documents
Containing YANG Data Models

Abstract
This document provides guidelines for authors and reviewers of specifications containing YANG
data models, including IANA-maintained YANG modules. Recommendations and procedures are
defined, which are intended to increase interoperability and usability of Network Configuration
Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules.

This document obsoletes RFC 8407; it also updates RFC 8126 by providing additional guidelines
for writing the IANA considerations for RFCs that specify IANA-maintained YANG modules.

Stream: Internet Engineering Task Force (IETF)
RFC: 9907
BCP: 216
Obsoletes: 8407
Updates: 8126
Category: Best Current Practice
Published: January 2026
ISSN: 2070-1721
Authors: A. Bierman

YumaWorks
M. Boucadair, Ed.
Orange

Q. Wu
Huawei

Status of This Memo
This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is
available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9907

Copyright Notice
Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

Bierman, et al. Best Current Practice Page 1

https://www.rfc-editor.org/rfc/rfc9907
https://www.rfc-editor.org/rfc/rfc8407
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/info/rfc9907

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Changes Since RFC 8407

2. Terminology and Notation Conventions

2.1. NETCONF Terms

2.2. YANG Terms

2.3. Network Management Datastore Architecture (NMDA) Terms

2.4. Requirements Notation

2.5. YANG Data Model versus YANG Module

3. General Documentation Guidelines

3.1. Module Copyright

3.2. Code Components

3.2.1. Example Modules

3.3. Terminology Section

3.4. Tree Diagrams

3.5. Narrative Sections

3.5.1. YANG Module Classification

3.6. Definitions Section

3.7. Security Considerations Section

3.7.1. Security Considerations Section Template

3.8. IANA Considerations Section

3.8.1. Documents That Create a New Namespace

3.8.2. Documents That Extend an Existing Namespace

3.8.3. Registration Templates

5

6

7

8

8

9

9

9

10

10

10

11

11

11

12

12

13

13

15

18

18

18

18

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 2

https://trustee.ietf.org/license-info

3.9. References Sections

3.10. Validation Tools

3.11. Module Extraction Tools

3.12. Module Usage Examples

4. YANG Usage Guidelines

4.1. Module Naming Conventions

4.2. Prefixes

4.3. Identifiers

4.3.1. Identifier Naming Conventions

4.4. Defaults

4.5. Conditional Statements

4.6. XPath Usage

4.6.1. XPath Evaluation Contexts

4.6.2. Function Library

4.6.3. Axes

4.6.4. Types

4.6.5. Wildcards

4.6.6. Boolean Expressions

4.7. YANG Definition Lifecycle Management

4.8. Module Header, Meta, and Revision Statements

4.9. Namespace Assignments

4.10. Top-Level Data Definitions

4.11. Data Types

4.11.1. Fixed-Value Extensibility

4.11.2. Patterns and Ranges

4.11.3. Enumerations and Bits

4.11.4. Union Types

4.11.5. Empty and Boolean

4.12. Reusable Type Definitions

4.13. Reusable Groupings

19

20

20

20

21

21

22

23

23

24

24

27

28

28

29

30

31

31

32

33

35

37

37

37

38

39

40

41

42

43

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 3

4.14. Data Definitions

4.14.1. Non-Presence Containers

4.14.2. Top-Level Data Nodes

4.15. Operation Definitions

4.16. Notification Definitions

4.17. Feature Definitions

4.18. YANG Data Node Constraints

4.18.1. Controlling Quantity

4.18.2. "must" versus "when"

4.19. "augment" Statements

4.19.1. Conditional Augment Statements

4.19.2. Conditionally Mandatory Data Definition Statements

4.20. Deviation Statements

4.21. Extension Statements

4.22. Data Correlation

4.22.1. Use of "leafref" for Key Correlation

4.23. Operational State

4.23.1. Combining Operational State and Configuration Data

4.23.2. Representing Operational Values of Configuration Data

4.23.3. NMDA Transition Guidelines

4.24. Performance Considerations

4.25. Open Systems Considerations

4.26. Guidelines for Constructs Specific to YANG 1.1

4.26.1. Importing Multiple Revisions

4.26.2. Using Feature Logic

4.26.3. "anyxml" versus "anydata"

4.26.4. "action" versus "rpc"

4.27. Updating YANG Modules (Published versus Unpublished)

4.28. Defining Standard Tags

4.29. Modeling Abstract Data Structures

43

44

45

45

45

46

47

47

47

47

47

48

49

50

50

51

52

52

53

53

56

57

57

57

57

57

57

58

59

59

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 4

4.30. IANA-Maintained Modules

4.30.1. Context

4.30.2. Guidelines for IANA-Maintained Modules

4.30.3. Guidance for Writing the IANA Considerations for RFCs Defining IANA-
Maintained Modules

5. IANA Considerations

5.1. YANG Modules

5.2. Update in YANG Parameters Registry Group

5.3. IANA-Maintained Modules

6. Operations and Manageability Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Module Review Checklist

Appendix B. Template for IETF Modules

Appendix C. Template for IANA-Maintained Modules

Acknowledgments

Authors' Addresses

59

59

60

62

71

71

72

72

72

73

73

73

74

78

79

81

83

84

1. Introduction
The standardization of network configuration interfaces for use with network configuration
management protocols, such as the Network Configuration Protocol (NETCONF) and
RESTCONF , requires a modular set of data models that can be reused and extended
over time.

This document defines a set of guidelines for documents containing YANG 1.1 and
YANG 1.0 data models, including IANA-maintained YANG modules. YANG is used to
define the data structures, protocol operations, and notification content used within a NETCONF
and/or RESTCONF server. YANG is also used to define abstract data structures . A
NETCONF or RESTCONF server that supports a particular YANG module will support client
NETCONF and/or RESTCONF operation requests, as indicated by the specific content defined in
the YANG module.

[RFC6241]
[RFC8040]

[RFC7950]
[RFC6020]

[RFC8791]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 5

Many YANG constructs are defined as optional to use, such as the "description" statement.
However, in order to make YANG modules more readable and interoperable, it is desirable to
define a set of descriptive usage guidelines that entails a higher level of compliance than the
minimum level defined in the YANG specification .

In addition, YANG allows constructs such as infinite length identifiers and string values, or top-
level mandatory nodes, that a compliant server is not required to support. Only constructs that
all servers are required to support can be used in IETF YANG modules.

This document defines usage guidelines related to the NETCONF operations layer and NETCONF
content layer, as defined in , and the RESTCONF methods and RESTCONF resources, as
defined in .

These guidelines are intended to be used by authors and reviewers to improve the readability
and interoperability of published YANG data models. These guidelines can be used independent
of the IETF Stream of publication or even by other organizations.

YANG 1.0 modules have to conform to while YANG 1.1 modules have to conform to
; this document adds usage guidelines in addition to these RFCs.

Section 4.30.3 updates by providing guidance for writing the IANA Considerations
sections for RFCs that specify IANA-maintained YANG modules.

Note that this document is not a YANG tutorial; the reader is expected to know the YANG data
modeling language before implementing the guidance in this document.

[RFC7950]

[RFC6241]
[RFC8040]

[RFC6020]
[RFC7950]

[RFC8126]

1.1. Changes Since RFC 8407
The following changes have been made to the guidelines published in :

Implemented the following errata reports: , , , and .
Updated the terminology.
Added a note about notation conventions.
Updated the reference information of the IETF author guidelines.
Updated the guidance so that the "file name" after the <CODE BEGINS> tag is mandatory.
Added code markers for the security template.
Updated the YANG security considerations template to better insist on the key secure
transport features.
Added statements that the security template is not required for modules that follow

 or .
Added a statement about how to cite the RFCs that are listed in the security template.
Added a template for IANA registrations.
Added a note that folding of the examples should be done as per the conventions described
in .
Added a recommendation about long trees.

[RFC8407]

• [Err5693] [Err5800] [Err6899] [Err7416]
•
•
•
•
•
•

•
[RFC8791] [RFC7952]

•
•
•

[RFC8792]
•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 6

Fixed a reference bug in Section 4.1.
Added a recommendation for the use of meaningful prefix values.
Added a note that folding of YANG modules as described in RFC 8792 can be used if and only
if built-in YANG features (e.g., break line, "+") are not sufficient.
Added tool validation checks to ensure that YANG modules fit into the line limits of an I-D.
Added tool validation checks of JSON-encoded examples.
Added a recommendation to ease extracting and validating examples.
Updated many examples to be aligned with the consistent indentation recommendation
(internal consistency).
Updated the IANA considerations to encourage registration requests to indicate whether or
not a module is maintained by IANA.
Added guidelines for IANA-maintained modules.
Added guidelines about the use of the terms "YANG module" and "YANG data model".
Elaborated the guidance for the use of values reserved for documentation in examples.
Recommended the use of "example:" for URI examples.
Added a new section "Defining Standard Tags" (Section 4.28) to echo the guidance in

.
Recommended against the use of "case + when" construct in some cases.
Added a discussion about the prefix pattern to use for example modules.
Updated the NMDA guidance in the narrative text to highlight modules that are not
compliant with NMDA.
Added a new section about the classification of YANG modules.
Fixed an inconsistency in Section 4.6.2 where the example mentions identities but uses them
without their prefix as per Section 4.6.4.
Fixed an inconsistency in Section 4.6.4 that failed to use "derived-from-or-self()" mentioned
back in Section 4.6.2.
Added a new section for modeling abstract data structures.
Added a discussion about "must + error-message" constructs for state data.
Added text about summary of changes in revision statements.
Added a template for IANA-maintained modules.
Updated the wiki URLs to use the new structure.
Added anydata to the list of statements with mandatory description(s) (Section 4.14).
Fixed an error (invalid statements) in Section 4.24.
Softened generic I-D authorship guidance.

•
•
•

•
•
•
•

•

•
•
•
•
•

[RFC8819]
•
•
•

•
•

•

•
•
•
•
•
•
•
•

2. Terminology and Notation Conventions
Some of the templates defined in the document use "--" to easily identify specific instructions to
the authors. Text prefixed with "--" must not be copied as such when using a template. Note that
for YANG templates, "//" is used to convey such instructions.

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 7

https://www.rfc-editor.org/rfc/rfc8407#section-4.6.2
https://www.rfc-editor.org/rfc/rfc8407#section-4.6.4
https://www.rfc-editor.org/rfc/rfc8407#section-4.6.4
https://www.rfc-editor.org/rfc/rfc8407#section-4.24

IANA-maintained module:

IETF module:

published:

unpublished:

YANG fragment:

YANG tree diagram:

RFC IIII is used to refer to an RFC that defines an initial version of an IANA-maintained module.

The following terms are used throughout this document:

A YANG module that is maintained by IANA and has an IANA
registry associated with it (e.g., "iana-tunnel-type" or "iana-pseudowire-types"

).

Once an IANA-maintained module is initialized, new values are not directly added to the
module. These values are instead added to the companion registry.

A YANG module that is published as an RFC from the IETF Stream and that is not
maintained by IANA.

A stable release of a module or submodule. For example, the "Request for
Comments" described in is considered a stable publication.

An unstable release of a module or submodule. For example, the "Internet-Draft"
described in is considered an unstable publication that is a work in
progress and is subject to change at any time.

A set of YANG statements that is not intended to represent a complete YANG
module or submodule. These statements are not intended for actual use, except to provide an
example of YANG statement usage. The invalid syntax "..." is sometimes used to indicate that
additional YANG statements would be present in a real YANG module.

A diagram representing the contents of a YANG module, as defined in
. It is also called a "tree diagram".

[RFC8675]
[RFC9291]

Section 2.1 of [RFC2026]

Section 2.2 of [RFC2026]

[RFC8340]

2.1. NETCONF Terms
The following terms are defined in and are not redefined here:

capabilities
client
operation
server

[RFC6241]

•
•
•
•

2.2. YANG Terms
The following terms are defined in and are not redefined here:

data node
module
namespace
submodule
version

[RFC7950]

•
•
•
•
•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 8

https://www.rfc-editor.org/rfc/rfc2026#section-2.1
https://www.rfc-editor.org/rfc/rfc2026#section-2.2

YANG
YIN

Note that the term "module" may be used as a generic term for a YANG module or submodule.
When describing properties that are specific to submodules, the term "submodule" is used
instead.

•
•

2.3. Network Management Datastore Architecture (NMDA) Terms
The following terms are defined in and are not redefined here:

configuration
conventional configuration datastore
datastore
operational state
operational state datastore

[RFC8342]

•
•
•
•
•

2.4. Requirements Notation
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

data model:

module:

2.5. YANG Data Model versus YANG Module
Both and make a distinction between the following concepts:

Describes how data is represented and accessed.

YANG structures data models into modules for ease of use .

Defines hierarchies of schema nodes to make a self-contained and compilable block of
YANG definitions and inclusions.

A YANG module is typically a single ".yang" file, starting with a "module" statement.

A YANG module may include any number of submodules that are stored in separate ".yang"
files starting with a "submodule" statement. Regardless of the presence of submodules, the
module and its submodules are externally viewed as a single YANG module.

A YANG data model can consist of:

a single YANG module (e.g.,) or
multiple YANG modules (e.g.,).

[RFC6020] [RFC7950]

[RFC8309]

1. [RFC9129]
2. [RFC7407]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 9

Note that the term "YANG model" is sometimes used as an abbreviation of "YANG data model".
However, that term should be avoided in favor of "YANG data model". Likewise, "YANG data
module" has no meaning and must be avoided.

Even if a YANG data model is structured as a single YANG module, the term "YANG data model"
should be used in the title, abstract, and in the body of the document where the overall design is
described. "YANG module" should be used when a specific "*.yang" file is referenced. Likewise,
"YANG module" should be used when using terms related to YANG module specifications (e.g.,
augmentation or deviation). However, when extending the concepts embodied in a YANG
module, authors should refer to those as an extension to the "YANG data model".

3. General Documentation Guidelines
YANG modules under review are likely to be contained in Internet-Drafts (I-Ds). Guidelines for
authoring an I-D can be found at . These guidelines are not repeated here.

The following sections be present in an I-D or RFC containing a YANG module:

Narrative sections (Section 3.5)
A Definitions section (Section 3.6)

Additional YANG-specific considerations be included for the following sections:

Security Considerations (Section 3.7)
IANA Considerations (Section 3.8)
References (Section 3.9)

There are three usage scenarios for YANG that can appear in an I-D or RFC:

normative module or submodule
example module or submodule
example YANG fragment that is not part of any module or submodule

The guidelines in this document refer mainly to a normative module or submodule, but they
may be applicable to example modules and YANG fragments as well.

[ID-Guidelines]

MUST

•
•

MUST

•
•
•

•
•
•

3.1. Module Copyright
The module "description" statement contain a reference to the latest approved IETF Trust
Copyright statement, which is available at: .

MUST
<https://trustee.ietf.org/license-info/>

3.2. Code Components
Each normative YANG module or submodule contained within an I-D or RFC is considered to be
a code component. The strings "<CODE BEGINS>" and "<CODE ENDS>" be used to identify
each code component.

MUST

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 10

https://trustee.ietf.org/license-info/

The "<CODE BEGINS>" tag be followed by a string identifying the file name specified in
. The name string form that includes the revision date be used.

The revision date match the date used in the most recent revision of the module.

The following example is for the "2016-03-20" revision of the "ietf-foo" module:

MUST
Section 5.2 of [RFC7950] SHOULD

MUST

<CODE BEGINS>
file "ietf-foo@2016-03-20.yang"

 module ietf-foo {
 namespace "urn:ietf:params:xml:ns:yang:ietf-foo";
 prefix "foo";
 organization "...";
 contact "...";
 description "...";
 revision 2016-03-20 {
 description "Latest revision";
 reference "RFC FFFF: Foo Protocol";
 }
 // ... more statements
 }

<CODE ENDS>

3.2.1. Example Modules

Example modules are not code components. The <CODE BEGINS> convention be used
for example modules. However, example modules be validated (Section 3.10).

An example module be named using the term "example", followed by a hyphen,
followed by a descriptive name, e.g., "example-toaster".

See Section 4.9 regarding the namespace guidelines for example modules.

MUST NOT
MUST

SHOULD

3.3. Terminology Section
A terminology section be present if any terms are defined in the document or if any terms
are imported from other documents.

MUST

3.4. Tree Diagrams
YANG tree diagrams provide a concise representation of a YANG module and be
included to help readers understand YANG module structure. Guidelines on tree diagrams can
be found in . Tree diagrams longer than one page be included in
an appendix, i.e., not in the main body of the document.

If YANG tree diagrams are used, then an informative reference to the YANG tree diagrams
specification be included in the document. Refer to for an
example of such a reference.

SHOULD

Section 3 of [RFC8340] SHOULD

MUST Section 2.2 of [RFC8349]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 11

https://www.rfc-editor.org/rfc/rfc7950#section-5.2
https://www.rfc-editor.org/rfc/rfc8340#section-3
https://www.rfc-editor.org/rfc/rfc8349#section-2.2

3.5. Narrative Sections
The narrative part include an overview section that describes the scope and field of
application of the data model(s) defined by the specification and that specifies the relationship
(if any) of these data models to other standards, particularly to standards containing other YANG
data models. The narrative part include one or more sections to briefly describe the
structure of the data models defined in the specification.

If the module or modules defined by the specification imports definitions from other modules
(except for those defined in or) or are always implemented in conjunction
with other modules, then those facts be noted in the overview section; any special
interpretations of definitions in other modules be noted as well. Refer to

 for an example of this overview section.

If the document contains major Network Management Datastore Architecture (NMDA)
exceptions or includes a temporary non-NMDA module , then the Introduction section

 mention this fact with the reasoning that motivated that design. Refer to Section 4.23
for more NMDA-related guidance. Specifically, Section 4.23.2 includes a recommendation for
designers to describe and justify any NMDA exceptions in detail as part of the module itself.

Consistent indentation be used for all examples, including YANG fragments and
protocol message instance data. If line wrapping is used for formatting purposes, then this

 be indicated per the guidance in , as shown in the following example:

Built-in YANG features (e.g., breaking line, "+") be used to fit a module into the line
limits. Exceptionally, YANG modules be folded as described in RFC 8792 if and only if built-
in YANG features are not sufficient. A similar approach (e.g., using "--tree-line-length 69" or
splitting a tree into subtrees) be followed for tree diagrams.

MUST

SHOULD

[RFC7950] [RFC6991]
MUST

MUST Section 2.3 of
[RFC8349]

[RFC8342]
SHOULD

SHOULD

SHOULD [RFC8792]

=============== NOTE: '\' line wrapping per RFC 8792 ================

<myleaf xmlns="tag:example.com,2017:example-two">this is a long \
value so the line needs to wrap to stay within 72 characters</myleaf>

SHOULD
MAY

SHOULD

Service Model:

3.5.1. YANG Module Classification

The narrative section include a mention of the classification of a given model. Such a
mention is meant to ease positioning the module in the overall operational ecosystem.
Specifically, the following types from and can be used:

Describes a service and the parameters of the service in a portable way that can
be used uniformly and independent of the equipment and operating environment.

Examples of service models are the L3VPN Service Model (L3SM) and the L2VPN
Service Model (L2SM) .

SHOULD

[RFC8309] [RFC8969]

[RFC8299]
[RFC8466]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 12

https://www.rfc-editor.org/rfc/rfc8349#section-2.3

Network Model:

Device Model:

Describes a network-level abstraction (or a subset of aspects of a network
infrastructure), including devices and their subsystems, and relevant protocols operating at
the link and network layers across multiple devices. This model corresponds to the network
configuration model discussed in .

This model can be used by a network operator to allocate resources (e.g., a tunnel resource or
a topology resource) for the service or to schedule resources to meet the service
requirements defined in a service model.

Examples of network models are the L3VPN Network Model (L3NM) or the L2VPN
Network Model (L2NM) .

Refers to the Network Element YANG data model described in or the
device configuration model discussed in .

Device models are also used to model a function embedded in a device (e.g., Access Control
Lists (ACLs)).

A comprehensive list of device models is provided in .

[RFC8309]

[RFC9182]
[RFC9291]

[RFC8199]
[RFC8309]

[RFC8519]

Appendix A.4.2 of [RFC8969]

3.6. Definitions Section
This section contains the module(s) defined by the specification. These modules be
written using the YANG 1.1 syntax. YANG 1.0 syntax be used if no
YANG 1.1 constructs or semantics are needed in the module. If any of the imported YANG
modules are written using YANG 1.1, then the module be written using YANG 1.1.

A YANG Independent Notation (YIN) syntax version () of the module
also be present in the document. There also be other types of modules present in the
document, such as Structure of Management Information Version 2 (SMIv2), which are not
affected by these guidelines.

Note that if the module itself is considered normative and not an example module or example
YANG fragment, then all YANG statements within a YANG module are considered normative. The
use of keywords defined in and apply to YANG "description" statements in
normative modules exactly as they would in any other normative section.

Example YANG modules and example YANG fragments contain any normative text,
including any all-uppercase reserved words from and .

Consistent indentation and formatting (e.g., folding) be used in all YANG statements
within a module.

See Section 4 for guidelines on YANG usage.

SHOULD
[RFC7950] [RFC6020] MAY

MUST

Section 13 of [RFC7950] MAY
MAY

[RFC2119] [RFC8174]

MUST NOT
[RFC2119] [RFC8174]

SHOULD

3.7. Security Considerations Section
Each specification that defines one or more modules contain a section that discusses
security considerations relevant to those modules.

MUST

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 13

https://www.rfc-editor.org/rfc/rfc8969#appendix-A.4.2
https://www.rfc-editor.org/rfc/rfc7950#section-13

Unless the modules comply with or define YANG extensions (e.g.,), the
security section be modeled after the latest approved template (available at

). Section 3.7.1 contains the security
considerations template. Authors check the web page at the URL listed above in case there
is a more recent version available.

In particular:

Writable data nodes that could be especially disruptive if abused be explicitly listed by
name, and the associated security risks be explained.
Readable data nodes that contain especially sensitive information or that raise significant
privacy concerns be explicitly listed by name, and the reasons for the sensitivity/
privacy concerns be explained.
Operations (i.e., YANG "rpc" statements) that are potentially harmful to system behavior or
that raise significant privacy concerns be explicitly listed by name, and the reasons for
the sensitivity/privacy concerns be explained.

Documents that exclusively define modules that follow the extension in are not
required to include the security template in Section 3.7.1. Likewise, following the template is not
required for modules that define YANG extensions such as .

[RFC8791] [RFC7952]
MUST <https://

wiki.ietf.org/group/ops/yang-security-guidelines>
MUST

• MUST
MUST

•
MUST
MUST

•
MUST

MUST

[RFC8791]

[RFC7952]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 14

https://wiki.ietf.org/group/ops/yang-security-guidelines
https://wiki.ietf.org/group/ops/yang-security-guidelines

3.7.1. Security Considerations Section Template

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 15

<CODE BEGINS>

X. Security Considerations

This section is modeled after the template described in Section 3.7
of [RFC9907].

The "<module-name>" YANG module defines a data model that is
designed to be accessed via YANG-based management protocols, such as
NETCONF [RFC6241] and RESTCONF [RFC8040]. These YANG-based
management protocols (1) have to use a secure transport layer
(e.g., SSH [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and (2) have
to use mutual authentication.

The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.

-- Writable nodes section:
--
-- If the data model contains any writable data nodes (those are all
-- the "config true" nodes), then include the following text:

There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., "config true", which is the
default). All writable data nodes are likely to be sensitive or
vulnerable in some network environments. Write
operations (e.g., edit-config) and delete operations to these data
nodes without proper protection or authentication can have a negative
effect on network operations. The following subtrees and data nodes
have particular sensitivities/vulnerabilities:

-- If the data model contains any particularly sensitive data nodes,
-- e.g., ones that are protected by a "nacm:default-deny-write"
-- or a "nacm:default-deny-all" extensions statement, then those
-- subtrees and data nodes must be listed, with an explanation of the
-- associated security risks with a focus on how they can be
-- disruptive if abused. Otherwise, state:
--
-- "There are no particularly sensitive writable data nodes."

-- Readable nodes section:
--
-- If the data model contains any readable data nodes (i.e., those
-- that are "config false" nodes, but also all other nodes, because
-- they can also be read via operations like get or get-config), then
-- include the following text:

Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. Specifically, the following
subtrees and data nodes have particular sensitivities/
vulnerabilities:

-- You must evaluate whether the data model contains any readable

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 16

-- data nodes (those are all the "config false" nodes, but also all
-- other nodes, because they can also be read via operations like get
-- or get-config) are particularly sensitive or vulnerable (e.g.,
-- if they might reveal customer information or violate personal
-- privacy laws). Typically, particularly sensitive readable
-- data nodes are ones that are protected by a
-- "nacm:default-deny-read" or a "nacm:default-deny-all" extensions
-- statement.
--
-- Otherwise, state:
-- "There are no particularly sensitive readable data nodes."

-- RPC/action operations section:
--
-- If the data model contains any RPC or action operations, then
-- include the following text:

Some of the RPC or action operations in this YANG module may be
considered sensitive or vulnerable in some network environments.
It is thus important to control access to these operations.
Specifically, the following operations have particular
sensitivities/ vulnerabilities:

-- If the data model contains any particularly sensitive RPC
-- or action operations, then those operations must be listed
-- here, along with an explanation of the associated specific
-- sensitivity or vulnerability concerns.
--
-- Otherwise, state:
-- "There are no particularly sensitive RPC or action operations."

-- Reusable groupings from other modules section:
--
-- If the data model reuses groupings from other modules and
-- the document that specifies these groupings also
-- includes those as data nodes, then add this text to remind
-- the specific sensitivity or vulnerability of reused nodes.

This YANG module uses groupings from other YANG modules that
define nodes that may be considered sensitive or vulnerable
in network environments. Refer to the Security Considerations
of <RFC-insert-numbers> for information as to which nodes may
be considered sensitive or vulnerable in network environments.

-- No data nodes section:
--
-- If the data model does not define any data nodes (i.e., none
-- of the above sections or readable/writable data nodes or RPCs
-- have been included), then add the following text:

The YANG module defines a set of identities, types, and
groupings. These nodes are intended to be reused by other YANG
modules. The module by itself does not expose any data nodes that
are writable, data nodes that contain read-only state, or RPCs.
As such, there are no additional security issues related to
the YANG module that need to be considered.

Modules that use the groupings that are defined in this document

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 17

Note: (or a future RFC that replaces it) be listed as a normative
reference.

By default, , , , , , and RFC 9907
(or future RFCs that replace any of them) are listed as informative references unless
normatively cited in other sections of the document that specifies the YANG module.

should identify the corresponding security considerations. For
example, reusing some of these groupings will expose privacy-related
information (e.g., 'node-example').

<CODE ENDS>

[RFC8341] MUST

[RFC4252] [RFC6241] [RFC8040] [RFC8446] [RFC9000]

3.8. IANA Considerations Section
Each normative YANG module be registered in both the "IETF XML Registry" group

 and the "YANG Module Names" registry .
The registration request in the "YANG Module Names" registry should indicate whether or not
the module is IANA-maintained. This applies to new modules and updated modules. An example
of an update registration for the "ietf-template" module can be found in Section 5.

Additional IANA considerations applicable to IANA-maintained modules (including instructions
to maintain them) are provided in Section 4.30.3.

MUST
[RFC3688] [IANA-XML] [RFC6020] [IANA-MOD-NAMES]

3.8.1. Documents That Create a New Namespace

If an I-D defines a new namespace that is to be administered by the IANA, then the document
 include an IANA Considerations section that specifies how the namespace is to be

administered.

Specifically, if any YANG module namespace statement value contained in the document is not
already registered with IANA, then a new entry in the "ns" registry within the "IETF XML
Registry" registry group be requested from the IANA.

A registration template for new YANG modules is provided in Section 3.8.3.1.

MUST

MUST

3.8.2. Documents That Extend an Existing Namespace

It is possible to extend an existing namespace using a YANG submodule that belongs to an
existing module already administered by IANA. In this case, the document containing the main
module be updated to use the latest revision of the submodule.MUST

3.8.3. Registration Templates

3.8.3.1. IANA Template for Documents Defining New YANG Modules
A registration template for a new module is provided below:

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 18

IANA is requested to register the following URI in the "ns"
registry within the "IETF XML Registry" group [RFC3688]:

 URI:
 Registrant Contact: The IESG
 XML: N/A; the requested URI is an XML namespace.

IANA is requested to register the following YANG module in the "YANG
Module Names" registry [RFC6020] within the "YANG Parameters"
registry group.

 Name:
 Maintained by IANA? Y/N
 Namespace:
 Prefix:
 Reference:

3.8.3.2. IANA Template for Revising YANG Modules
A registration template for a revised module is provided below:

IANA is requested to update the following registration in the "ns"
registry within the "IETF XML Registry" group [RFC3688] to
reference this document:

 URI:
 Registrant Contact: The IESG
 XML: N/A; the requested URI is an XML namespace.

IANA is requested to register the following YANG module in the "YANG
Module Names" registry [RFC6020] within the "YANG Parameters"
registry group.

 Name:
 Maintained by IANA? Y/N
 Namespace:
 Prefix:
 Reference:

3.9. References Sections
For every import or include statement that appears in a module contained in the specification
that identifies a module in a separate document, a corresponding normative reference to that
document appear in the Normative References section. The reference correspond to
the specific module version actually used within the specification.

For every normative reference statement that appears in a module contained in the specification
that identifies a separate document, a corresponding normative reference to that document

 appear in the Normative References section. The reference correspond to the

MUST MUST

SHOULD SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 19

specific document version actually used within the specification. If the reference statement
identifies an informative reference that identifies a separate document, a corresponding
informative reference to that document appear in the Informative References section.MAY

3.10. Validation Tools
All modules need to be validated before submission in an I-D. The 'pyang' YANG compiler is
freely available from GitHub: .

If the 'pyang' compiler is used to validate a normative module, then the "--ietf" command-line
option be used to identify any IETF guideline issues.

If the 'pyang' compiler is used to validate an example module, then the "--ietf" command-line
option be used to identify any IETF guideline issues.

To ensure that a module fits into the line limits of an I-D, the command "pyang -f yang --keep-
comments --yang-line-length 69" should be used.

The "yanglint" program is also freely available from GitHub:
.

This tool can be used to validate XPath statements within YANG modules.

To check that JSON-encoded examples comply with the target data models, programs
such as "yangson" or "yanglint" should be used. Both programs are freely available from GitHub:

 and .

<https://github.com/mbj4668/pyang>

MUST

MAY

<https://github.com/CESNET/
libyang>

[RFC7951]

<https://github.com/CZ-NIC/yangson> <https://github.com/CESNET/libyang>

3.11. Module Extraction Tools
A version of 'rfcstrip' that will extract YANG modules from an I-D or RFC is freely available at:

.

This tool can be used to verify that the "<CODE BEGINS>" and "<CODE ENDS>" tags are used
correctly and that the normative YANG modules can be extracted correctly.

The 'xym' tool is freely available on GitHub and can be used to extract YANG modules from a
document: .

<https://github.com/mbj4668/rfcstrip>

<https://github.com/xym-tool/xym>

3.12. Module Usage Examples
Each specification that defines one or more modules contain usage examples, either
throughout the document or in an appendix. This includes example instance document snippets
in an appropriate encoding (e.g., XML and/or JSON) to demonstrate the intended usage of the
YANG module(s). Examples be validated (Section 3.10). Refer to Section 3.10 for tools that
validate YANG modules and examples. If IP addresses/prefixes are used, then a mix of either
IPv4 and IPv6 addresses/prefixes or IPv6 addresses/prefixes exclusively be used in the
examples.

SHOULD

MUST

SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 20

https://github.com/mbj4668/pyang
https://github.com/CESNET/libyang
https://github.com/CESNET/libyang
https://github.com/CZ-NIC/yangson
https://github.com/CESNET/libyang
https://github.com/mbj4668/rfcstrip
https://github.com/xym-tool/xym

For some types (IP addresses, domain names, etc.), the IETF has reserved values for
documentation use. Authors use these reserved values in the usage examples if these
types are used. Examples of reserved values are listed below:

IPv4 and IPv6 addresses/prefixes reserved for documentation are defined in ,
, and .

The Enterprise Number 32473 reserved for documentation use is defined in .
Autonomous System Numbers (ASNs) reserved for documentation use are defined in

.
Reserved domain names for documentation are defined in .

URI examples be prefixed with "example:".

In order to ease extraction and validation of examples, it is to use code markers.

SHOULD

• [RFC5737]
[RFC3849] [RFC9637]

• [RFC5612]
•

[RFC5398]
• [RFC2606]

SHOULD

RECOMMENDED

4. YANG Usage Guidelines
Modules in IETF Standards Track specifications comply with all syntactic and semantic
requirements of YANG 1.1 . See the exception for YANG 1.0 in Section 3.6. The
guidelines in this section are intended to supplement the YANG specification , which is
intended to define a minimum set of conformance requirements.

In order to promote interoperability and establish a set of practices based on previous
experience, the following sections establish usage guidelines for specific YANG constructs.

Only guidelines that clarify or restrict the minimum conformance requirements are included
here.

A template for IETF modules is provided in Appendix B.

MUST
[RFC7950]

[RFC7950]

4.1. Module Naming Conventions
Normative modules contained in Standards Track documents be named according to the
guidelines in the IANA Considerations section of .

A distinctive word or abbreviation (e.g., protocol name or working group abbreviation)
be used in the module name. If new definitions are being defined to extend one or more existing
modules, then the same word or abbreviation should be reused, instead of creating a new one.

All published module names be unique. For a YANG module published in an RFC, this
uniqueness is guaranteed by IANA (). For unpublished modules, the
authors need to check that no other work in progress is using the same module name.

Example modules are non-normative and be named with the prefix "example-".

MUST
[RFC6020]

SHOULD

MUST
Section 14 of [RFC6020]

SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 21

https://www.rfc-editor.org/rfc/rfc6020#section-14

It is suggested that a stable module name prefix be selected that represents the entire
organization. All normative YANG modules published by the IETF begin with the prefix
"ietf-". All IANA-maintained YANG modules begin with the prefix "iana-". Another
standards organization, such as the IEEE, might use the prefix "ieee-" for all YANG modules.

Once a module name is published, it be reused, even if the RFC containing the module
is reclassified to "Historic" status. A module name cannot be changed in YANG, and this would be
treated as a new module, not a name change.

MUST
MUST

MUST NOT

4.2. Prefixes
All YANG definitions are scoped by the module containing the definition being referenced. This
allows the same name to be used in multiple modules, even if the names are not unique. In the
example below, the identifier "foo" is used in all three modules:

YANG defines the following rules for prefix usage:

Prefixes are never used for built-in data types and YANG keywords.
A prefix be used for any external statement (i.e., a statement defined with the YANG
"extension" statement).
The proper module prefix be used for all identifiers imported from other modules.
The proper module prefix be used for all identifiers included from a submodule.

The following guidelines apply to prefix usage of the current (local) module:

The local module prefix be used instead of no prefix in all path expressions.

 module example-foo {
 namespace "tag:example.com,2017:example-foo";
 prefix f;

 container foo;
 }

 module example-bar {
 namespace "tag:example.com,2017:example-bar";
 prefix b;

 typedef foo { type uint32; }
 }

 module example-one {
 namespace "tag:example.com,2017:example-one";
 prefix one;
 import example-foo { prefix f; }
 import example-bar { prefix b; }

 augment "/f:foo" {
 leaf foo { type b:foo; }
 }
 }

•
• MUST

• MUST

• MUST

• SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 22

The local module prefix be used instead of no prefix in all "default" statements for an
"identityref" or "instance-identifier" data type.
The local module prefix be used for references to typedefs, groupings, extensions,
features, and identities defined in the module.

Consistent with , the prefix defined by a module be used when
the module is imported, unless there is a conflict.

Prefix values be short but meaningful to the intended user. Prefix values
conflict with known modules that have been previously published.

For convenience, prefix values of example modules be prefixed with "ex" or similar
patterns. In doing so, readers of example modules or tree diagrams that mix both example and
standard modules can easily identify example parts.

• MUST

• MAY

Section 7.1.4 of [RFC7950] SHOULD

SHOULD SHOULD NOT

SHOULD

4.3. Identifiers
All YANG identifiers in published modules be between 1 and 64 characters in length. These
include any construct specified as an "identifier-arg-str" token in the ABNF in

.

MUST
Section 14 of

[RFC7950]

4.3.1. Identifier Naming Conventions

Identifiers follow a consistent naming pattern throughout the module. Only lowercase
letters, numbers, and dashes be used in identifier names. Uppercase characters, the
period character, and the underscore character be used if the identifier represents a well-
known value that uses these characters. YANG does not permit any other characters in YANG
identifiers.

Identifiers include complete words and/or well-known acronyms or abbreviations.
Child nodes within a container or list replicate the parent identifier. YANG
identifiers are hierarchical and are only meant to be unique within the set of sibling nodes
defined in the same module namespace.

List identifiers be singular with the surrounding container name plural. Similarly, "leaf-
list" identifiers be singular.

It is permissible to use common identifiers such as "name" or "id" in data definition statements,
especially if these data nodes share a common data type.

Identifiers carry any special semantics that identify data modeling properties. Only
YANG statements and YANG extension statements are designed to convey machine-readable data
modeling properties. For example, naming an object "config" or "state" does not change whether
it is configuration data or state data. Only defined YANG statements or YANG extension
statements can be used to assign semantics in a machine-readable format in YANG.

SHOULD
SHOULD

MAY

SHOULD
SHOULD NOT

SHOULD
SHOULD

SHOULD NOT

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 23

https://www.rfc-editor.org/rfc/rfc7950#section-7.1.4
https://www.rfc-editor.org/rfc/rfc7950#section-14

4.4. Defaults
In general, it is suggested that substatements containing very common default values

 be present. The substatements listed in Table 1 are commonly used with the default value,
which would make the module difficult to read if used everywhere they are allowed.

SHOULD
NOT

Statement Default Value

config true

mandatory false

max-elements unbounded

min-elements 0

ordered-by system

status current

yin-element false

Table 1: Statement Defaults

4.5. Conditional Statements
A module may be conceptually partitioned in several ways using the "if-feature" and/or "when"
statements.

Data model designers need to carefully consider all modularity aspects, including the use of
YANG conditional statements.

If a data definition is optional, depending on server support for a NETCONF or RESTCONF
protocol capability, then a YANG "feature" statement be defined. The defined "feature"
statement then be used in the conditional "if-feature" statement referencing the
optional data definition.

If any notification data, or any data definition, for a non- configuration data node is not
mandatory, then the server may or may not be required to return an instance of this data node.
If any conditional requirements exist for returning the data node in a notification payload or
retrieval request, they be documented somewhere. For example, a "when" or "if-feature"
statement could apply to the data node or the conditional requirements could be explained in a
"description" statement within the data node or one of its ancestors (if any).

If any "if-feature" statements apply to a list node, then the same "if-feature" statements
apply to any key leaf nodes for the list. There be any "if-feature" statements applied to
any key leafs that do not also apply to the parent list node.

SHOULD
SHOULD

MUST

MUST
MUST NOT

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 24

There be any "when" statements applied to a key leaf node. It is possible that a
"when" statement for an ancestor node of a key leaf will have the exact node-set result as the key
leaf. In such a case, the "when" statement for the key leaf is redundant and be avoided.

Some modules use a "case + when" construct but provide duplicated information (e.g., the
"when" statements are constraining a single case in the choice as shown in the example below).
Such constructs with duplicated information be used.

The following example removes the duplicated information:

SHOULD NOT

SHOULD

SHOULD NOT

 leaf type {
 type enumeration {
 enum a;
 enum b;
 enum c;
 }
 mandatory true;
 }
 choice type-choice {
 case b {
 container type-b {
 when "../type = 'b'";
 leaf foo {
 type string;
 }
 }
 }
 case c {
 container type-c {
 when "../type = 'c'";
 leaf bar {
 mandatory true;
 type string;
 }
 }
 }
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 25

Note that the use of "case + when" is still useful in cases where complementary modeling
constraints should be expressed. See the example provided below:

 leaf type {
 type enumeration {
 enum a;
 enum b;
 enum c;
 }
 mandatory true;
 }
 container type-b {
 when "../type = 'b'";
 leaf foo {
 type string;
 }
 }
 container type-c {
 when "../type = 'c'";
 leaf bar {
 mandatory true;
 type string;
 }
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 26

 includes provisions for defining constraints on state data and specifies
that a constraint must be true in a valid state data tree. However,
softens that behavior by allowing semantic constraints to be violated under some circumstances
to help to detect anomalies. Relaxing validation constraints on state data is meant to reveal
deviations of the observed behavior versus intended behavior of a managed entity and
hopefully trigger corrective actions by a management system. From that perspective, it is

 to avoid defining constraints on state data that would hinder the detection by a
management system of abnormal behaviors of a managed entity.

 leaf type {
 type enumeration {
 enum a;
 enum b;
 enum c;
 }
 }
 choice second-type {
 mandatory true;
 case foo {
 container foo {
 presence "When present, indicates type foo";
 leaf foo-attribute {
 type string;
 }
 }
 }
 case b {
 container bar {
 when "../type = 'a' or ../type = 'b'";
 presence "When present, indicates type bar";
 leaf bar-attribute {
 type string;
 }
 }
 }
 case c {
 container baz {
 when "../type = 'c'";
 leaf baz-attribute {
 mandatory true;
 type string;
 }
 }
 }
 }

Section 8.1 of [RFC7950]
Section 5.3 of [RFC8342]

RECOMMENDED

4.6. XPath Usage
This section describes guidelines for using the XML Path Language (XPath)
within YANG modules.

[W3C.REC-xpath]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 27

https://www.rfc-editor.org/rfc/rfc7950#section-8.1
https://www.rfc-editor.org/rfc/rfc8342#section-5.3

4.6.1. XPath Evaluation Contexts

YANG defines five separate contexts for evaluation of XPath statements:

The "running" datastore: collection of all YANG configuration data nodes. The document root
is the conceptual container (e.g., "config" in the "edit-config" operation), which is the parent
of all top-level data definition statements with a "config" statement value of "true".
State data + the "running" datastore: collection of all YANG data nodes. The document root is
the conceptual container, parent of all top-level data definition statements.
Notification: an event notification document. The document root is the notification element.
RPC Input: The document root is the conceptual "input" node, which is the parent of all RPC
input parameter definitions.
RPC Output: The document root is the conceptual "output" node, which is the parent of all
RPC output parameter definitions.

Note that these XPath contexts cannot be mixed. For example, a "when" statement in a
notification context cannot reference configuration data.

It is especially important to consider the XPath evaluation context for XPath expressions defined
in groupings. An XPath expression defined in a grouping may not be portable, meaning it cannot
be used in multiple contexts and produce proper results.

If the XPath expressions defined in a grouping are intended for a particular context, then this
context be identified in the "description" statement for the grouping.

1.

2.

3.
4.

5.

 notification foo {
 leaf mtu {
 // NOT okay because when-stmt context is this notification
 when "/if:interfaces/if:interface[name='eth0']";
 type leafref {
 // Okay because path-stmt has a different context
 path "/if:interfaces/if:interface/if:mtu";
 }
 }
 }

SHOULD

4.6.2. Function Library

The "position" and "last" functions be used. This applies to implicit use of the
"position" function as well (e.g., '//chapter[42]'). A server is only required to maintain the
relative XML document order of all instances of a particular user-ordered list or leaf-list. The
"position" and "last" functions be used if they are evaluated in a context where the context
node is a user- ordered "list" or "leaf-list".

The "id" function be used. The "ID" attribute is not present in YANG documents, so
this function has no meaning. The XPath execution environment return an empty string
for this function.

SHOULD NOT

MAY

SHOULD NOT
SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 28

The "namespace-uri" and "name" functions be used. Expanded names in XPath are
different than YANG. A specific canonical representation of a YANG-expanded name does not
exist.

The "lang" function be used. This function does not apply to YANG because there is
no "lang" attribute set with the document. The XPath execution environment return
"false" for this function.

The "local-name", "namespace-uri", "name", "string", and "number" functions be
used if the argument is a node-set. If so, the function result will be determined by the document
order of the node-set. Since this order can be different on each server, the function results can
also be different. Any function call that implicitly converts a node-set to a string will also have
this issue.

The "local-name" function be used to reference local names outside of the YANG
module that defines the must or when expression containing the "local-name" function. Example
of a "local-name" function that should not be used:

The "derived-from-or-self" function be used instead of an equality expression for
identityref values. This allows the identities to be conceptually augmented.

Example:

SHOULD NOT

SHOULD NOT
SHOULD

SHOULD NOT

SHOULD NOT

 /*[local-name()='foo']

SHOULD

 // assume "ex" is the prefix of the module where the identity
 // name-format-null is defined

 // do not use
 when "md-name-format = 'name-format-null'";

 // this is preferred
 when "derived-from-or-self(md-name-format, 'ex:name-format-null')";

4.6.3. Axes

The "attribute" and "namespace" axes are not supported in YANG and be empty in a
NETCONF or RESTCONF server implementation.

The "preceding" and "following" axes be used. These constructs rely on XML
document order within a NETCONF or RESTCONF server configuration database, which may not
be supported consistently or produce reliable results across implementations. Predicate
expressions based on static node properties (e.g., element name or value, and "ancestor" or
"descendant" axes) be used instead. The "preceding" and "following" axes be used
if document order is not relevant to the outcome of the expression (e.g., check for global
uniqueness of a parameter value).

MAY

SHOULD NOT

SHOULD MAY

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 29

The "preceding-sibling" and "following-sibling" axes be used; however, they
be used if document order is not relevant to the outcome of the expression.

A server is only required to maintain the relative XML document order of all instances of a
particular user-ordered list or leaf-list. The "preceding-sibling" and "following-sibling" axes
be used if they are evaluated in a context where the context node is a user-ordered "list" or "leaf-
list".

SHOULD NOT MAY

MAY

4.6.4. Types

Data nodes that use the "int64" and "uint64" built-in type be used within numeric
or boolean expressions. There are boundary conditions in which the translation from the YANG
64-bit type to an XPath number can cause incorrect results. Specifically, an XPath "double"
precision floating-point number cannot represent very large positive or negative 64-bit numbers
because it only provides a total precision of 53 bits. The "int64" and "uint64" data types be
used in numeric expressions if the value can be represented with no more than 53 bits of
precision.

Data modelers need to be careful not to confuse the YANG value space and the XPath value
space. The data types are not the same in both, and conversion between YANG and XPath data
types be considered carefully.

Explicit XPath data type conversions be used (e.g., "string", "boolean", or "number"
functions), instead of implicit XPath data type conversions.

XPath expressions that contain a literal value representing a YANG identity always
include the declared prefix of the module where the identity is defined.

XPath expressions for "when" statements reference the context node or any
descendant nodes of the context node. They reference descendant nodes if the "when"
statement is contained within an "augment" statement and the referenced nodes are not defined
within the "augment" statement.

Example:

SHOULD NOT

MAY

SHOULD

MAY

SHOULD

SHOULD NOT
MAY

augment "/rt:active-route/rt:input/rt:destination-address" {
 when "derived-from-or-self(rt:address-family, "
 + "'v4ur:ipv4-unicast')" {
 description
 "This augment is valid only for IPv4 unicast.";
 }
 // nodes defined here within the augment-stmt
 // cannot be referenced in the when-stmt
}

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 30

4.6.5. Wildcards

It is possible to construct XPath expressions that will evaluate differently when combined with
several modules within a server implementation rather than when evaluated within the single
module. This is due to augmenting nodes from other modules.

Wildcard expansion is done within a server against all the nodes from all namespaces, so it is
possible for a "must" or "when" expression that uses the '*' operator to always evaluate to false
if processed within a single YANG module. In such cases, the "description" statement
clarify that augmenting objects are expected to match the wildcard expansion.

SHOULD

 when /foo/services/*/active {
 description
 "No services directly defined in this module.
 Matches objects that have augmented the services container.";
 }

4.6.6. Boolean Expressions

The YANG "must" and "when" statements use an XPath boolean expression to define the test
condition for the statement. It is important to specify these expressions in a way that will not
cause inadvertent changes in the result if the objects referenced in the expression are updated
in future revisions of the module.

For example, the leaf "foo2" must exist if the leaf "foo1" is equal to "one" or "three":

In the next revision of the module, leaf "foo1" is extended with a new enum named "four":

 leaf foo1 {
 type enumeration {
 enum one;
 enum two;
 enum three;
 }
 }

 leaf foo2 {
 // INCORRECT
 must "/f:foo1 != 'two'";
 type string;
 }
 leaf foo2 {
 // CORRECT
 must "/f:foo1 = 'one' or /f:foo1 = 'three'";
 type string;
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 31

Now the first XPath expression will allow the enum "four" to be accepted in addition to the "one"
and "three" enum values.

 leaf foo1 {
 type enumeration {
 enum one;
 enum two;
 enum three;
 enum four;
 }
 }

4.7. YANG Definition Lifecycle Management
The YANG status statement be present within a definition if its value is "deprecated" or
"obsolete". The status be changed from "current" directly to "obsolete". An object

 be available for at least one year after the publication date with a "deprecated" status
before it is changed to "obsolete".

The module or submodule name be changed once the document containing the
module or submodule is published.

The module namespace URI value be changed once the document containing the
module is published.

The revision date substatement within the import statement be present if any
groupings are used from the external module.

The revision date substatement within the include statement be present if any
groupings are used from the external submodule.

If an import statement is for a module from a stable source (e.g., an RFC for an IETF module),
then a reference-stmt be present within an import statement.

If submodules are used, then the document containing the main module be updated so
that the main module revision date is equal to or more recent than the revision date of any
submodule that is (directly or indirectly) included by the main module.

Definitions for future use be specified in a module. Do not specify placeholder
objects like the "reserved" example below:

MUST
SHOULD NOT

SHOULD

MUST NOT

MUST NOT

SHOULD

SHOULD

SHOULD

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

MUST

SHOULD NOT

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 32

 leaf reserved {
 type string;
 description
 "This object has no purpose at this time, but a future
 revision of this module might define a purpose
 for this object.";
 }

4.8. Module Header, Meta, and Revision Statements
For published modules, the namespace be a globally unique URI, as defined in .
This value is usually assigned by the IANA.

The "organization" statement be present. If the module is contained in a document
intended for IETF Standards Track status, then the organization be the IETF working
group (WG) chartered to write the document. Exceptions include (but are not limited to):
example modules, IANA-maintained modules, or modules contained in AD-sponsored
documents. For other standards organizations, a similar approach is also suggested.

The "contact" statement be present. If the module is contained in a document intended for
Standards Track status, then the WG web and mailing information be present, and the
main document author or editor contact information be present. If additional authors
or editors exist, their contact information be present. There is no need to include the
contact information for WG Chairs.

The "description" statement be present. For modules published within IETF documents,
the appropriate IETF Trust Copyright text be present, as described in Section 3.1, and
contain the following statement:

All revisions of IETF and IANA published modules can be found at the "YANG
Parameters" registry group: .

If the module relies on information contained in other documents, which are not the same
documents implied by the import statements present in the module, then these documents
be identified in the reference statement.

A "revision" statement be present for each published version of the module. The "revision"
statement have a "reference" substatement. It identify the published document that
contains the module. Modules are often extracted from their original documents, and it is useful
for developers and operators to know how to find the original source document in a consistent
manner. The "revision" statement have a "description" substatement. For convenience, the
description text of a new published revision may summarize any changes made to a module
compared to the previous published revision. Typically, that list is a YANG-specific subset of the
summary of changes listing any changes made from the RFC being updated or obsoleted as per

.

MUST [RFC3986]

MUST
SHOULD

MUST
SHOULD

SHOULD
MAY

MUST
MUST MUST

<https://www.iana.org/assignments/yang-parameters>

MUST

MUST
MUST MUST

MAY

[ID-Guidelines]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 33

https://www.iana.org/assignments/yang-parameters

The following example shows the revision statement for a published YANG module:

The following example shows the revision statements for a published YANG module that updates
a published module. The new revision statement summarizes the changes compared to the
previous published revision.

For an unpublished module, a complete history of each unpublished module revision is not
required. That is, within a sequence of draft versions, only the most recent revision need be
recorded in the module. Do not remove or reuse a revision statement for a published module. A
new revision date is not required unless the module contents have changed. If the module
contents have changed, then the revision date of that new module version be updated to a
date later than that of the previous version.

The following example shows the revision statements for an unpublished update to a published
YANG module. The latest revision statement of the unpublished module summarizes the changes
compared to the previous revision.

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

 revision 2013-07-15 {
 description
 "This revision adds the following new data types:
 - yang:yang-identifier
 - yang:hex-string
 - yang:uuid
 - yang:dotted-quad";
 reference
 "RFC 6991: Common YANG Data Types";
 }

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

MUST

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 34

 revision 2023-01-23 {
 description
 "This revision adds the following new data types:
 - yang:date-with-zone-offset
 - yang:date-no-zone
 - yang:time-with-zone-offset
 - yang:time-no-zone
 - yang:hours32
 - yang:minutes32
 - yang:seconds32
 - yang:centiseconds32
 - yang:milliseconds32
 - yang:microseconds32
 - yang:microseconds64
 - yang:nanoseconds32
 - yang:nanoseconds64
 - yang:language-tag
 The yang-identifier definition has been aligned with YANG 1.1.
 Several pattern statements have been improved.";
 reference
 "RFC 6991: Common YANG Data Types";
 }

 revision 2013-07-15 {
 description
 "This revision adds the following new data types:
 - yang:yang-identifier
 - yang:hex-string
 - yang:uuid
 - yang:dotted-quad";
 reference
 "RFC 6991: Common YANG Data Types";
 }

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

4.9. Namespace Assignments
It is that only valid YANG modules be included in documents, whether or not the
modules are published yet. This allows:

the module to compile correctly instead of generating disruptive fatal errors.
early implementors to use the modules without picking a random value for the XML
namespace.
early interoperability testing since independent implementations will use the same XML
namespace value.

RECOMMENDED

•
•

•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 35

Until a URI is assigned by the IANA, a proposed namespace URI be provided for the
namespace statement in a YANG module. A value be selected that is not likely to collide
with other YANG namespaces. Standard module names, prefixes, and URI strings already listed
in the "YANG Module Names" registry group be used.

A standard namespace statement value have the following form:

The following URN prefix string be used for published and unpublished YANG modules:

The following example URNs would be valid namespace statement values for Standards Track
modules:

Note that a different URN prefix string be used for modules that are not Standards
Track. The string be selected according to the guidelines in .

The following URIs exemplify what might be used by modules that are not Standards Track. Note
that the domain "example.com" be used by example modules in I-Ds from the IETF
Stream. These URIs are not intended to be dereferenced. They are used for module namespace
identification only.

Example URIs using URLs per :

Example URIs using tags per :

MUST
SHOULD

MUST NOT

SHOULD

 <URN prefix string>:<module-name>

SHOULD

 urn:ietf:params:xml:ns:yang

 urn:ietf:params:xml:ns:yang:ietf-netconf-partial-lock

 urn:ietf:params:xml:ns:yang:ietf-netconf-state

 urn:ietf:params:xml:ns:yang:ietf-netconf

SHOULD
SHOULD Section 5.3 of [RFC7950]

SHOULD

[RFC3986]

 https://example.com/ns/example-interfaces

 https://example.com/ns/example-system

[RFC4151]

 tag:example.com,2017:example-interfaces

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 36

https://www.rfc-editor.org/rfc/rfc7950#section-5.3

 tag:example.com,2017:example-system

4.10. Top-Level Data Definitions
The top-level data organization be considered carefully, in advance. Data model
designers need to consider how the functionality for a given protocol or protocol family will
grow over time.

The separation of configuration data and operational state be considered carefully. It is
sometimes useful to define separate top- level containers for configuration and non-
configuration data. For some existing top-level data nodes, configuration data was not in scope,
so only one container representing operational state was created. Refer to NMDA for
details.

The number of top-level data nodes within a module be minimized. It is often useful to
retrieve related information within a single subtree. If data is too distributed, it becomes
difficult to retrieve all at once.

The names and data organization reflect persistent information, such as the name of a
protocol. The name of the working group be used because this may change over
time.

A mandatory database data definition is defined as a node that a client must provide for the
database to be valid. The server is not required to provide a value.

Top-level database data definitions be mandatory. If a mandatory node appears at the
top level, it will immediately cause the database to be invalid. This can occur when the server
boots or when a module is loaded dynamically at runtime.

SHOULD

SHOULD

[RFC8342]

SHOULD

SHOULD
SHOULD NOT

MUST NOT

4.11. Data Types
Selection of an appropriate data type (i.e., built-in type, existing derived type, or new derived
type) is very subjective; therefore, few requirements can be specified on that subject.

Data model designers use the most appropriate built-in data type for the particular
application.

The signed numeric data types (i.e., "int8", "int16", "int32", and "int64") be used
unless negative values are allowed for the desired semantics.

SHOULD

SHOULD NOT

4.11.1. Fixed-Value Extensibility

If the set of values is fixed and the data type contents are controlled by a single naming
authority (e.g., IANA), then an enumeration data type be used.SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 37

If distributed extensibility or hierarchical organization of enumerated values is required, then
the "identityref" data type be used instead of an enumeration or other built-in type.

Note that any module can declare an identity with base "foo-type" that is valid for the "foo" leaf.
Identityref values are considered to be qualified names.

 leaf foo {
 type enumeration {
 enum one;
 enum two;
 }
 }

SHOULD

 identity foo-type {
 description "Base for the extensible type";
 }

 identity one {
 base f:foo-type;
 }

 identity two {
 base f:foo-type;
 }

 leaf foo {
 type identityref {
 base f:foo-type;
 }
 }

4.11.2. Patterns and Ranges

For string data types, if a machine-readable pattern can be defined for the desired semantics,
then one or more pattern statements be present. A single-quoted string be used
to specify the pattern, since a double-quoted string can modify the content. If the patterns used
in a type definition have known limitations such as false negative or false positive matches, then
these limitations be documented within the typedef or data definition.

The following typedef from demonstrates the proper use of the "pattern" statement:

For string data types, if the length of the string is required to be bounded in all implementations,
then a length statement be present.

SHOULD SHOULD

SHOULD

[RFC6991]

 typedef ipv6-address-no-zone {
 type inet:ipv6-address {
 pattern '[0-9a-fA-F:\.]*';
 }
 ...
 }

MUST

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 38

The following typedef from demonstrates the proper use of the "length" statement:

For numeric data types, if the values allowed by the intended semantics are different than those
allowed by the unbounded intrinsic data type (e.g., "int32"), then a range statement be
present.

The following typedef from demonstrates the proper use of the "range" statement:

[RFC6991]

 typedef yang-identifier {
 type string {
 length "1..max";
 pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
 pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
 }
 ...
 }

SHOULD

[RFC6991]

 typedef dscp {
 type uint8 {
 range "0..63";
 }
 ...
 }

4.11.3. Enumerations and Bits

For "enumeration" or "bits" data types, the semantics for each "enum" or "bit" be
documented. A separate "description" statement (within each "enum" or "bit" statement)
be present.

SHOULD
SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 39

 leaf foo {
 // INCORRECT
 type enumeration {
 enum one;
 enum two;
 }
 description
 "The foo enum...
 one: The first enum
 two: The second enum";
 }
 leaf foo {
 // CORRECT
 type enumeration {
 enum one {
 description "The first enum";
 }
 enum two {
 description "The second enum";
 }
 }
 description
 "The foo enum... ";
 }

4.11.4. Union Types

The YANG "union" type is evaluated by testing a value against each member type in the union.
The first type definition that accepts a value as valid is the member type used. In general,
member types be ordered from most restrictive to least restrictive types.

In the following example, the "enumeration" type will never be matched because the preceding
"string" type will match everything.

Incorrect:

Correct:

SHOULD

 type union {
 type string;
 type enumeration {
 enum up;
 enum down;
 }
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 40

It is possible for different member types to match, depending on the input encoding format. In
XML, all values are passed as string nodes; but in JSON, there are different value types for
numbers, booleans, and strings.

In the following example, a JSON numeric value will always be matched by the "int32" type, but
in XML the string value representing a number will be matched by the "string" type. The second
version will match the "int32" member type no matter how the input is encoded.

Incorrect:

Correct:

 type union {
 type enumeration {
 enum up;
 enum down;
 }
 type string;
 }

 type union {
 type string;
 type int32;
 }

 type union {
 type int32;
 type string;
 }

4.11.5. Empty and Boolean

YANG provides an "empty" data type, which has one value (i.e., present). The default is "not
present", which is not actually a value. When used within a list key, only one value can (and
must) exist for this key leaf. The type "empty" be used for a key leaf since it is
pointless.

There is really no difference between a leaf of type "empty" and a leaf-list of type "empty". Both
are limited to one instance. The type "empty" be used for a leaf-list.

The advantage of using type "empty" instead of type "boolean" is that the default (not present)
does not take up any bytes in a representation. The disadvantage is that the client may not be
sure if an empty leaf is missing because it was filtered somehow or not implemented. The client
may not have a complete and accurate schema for the data returned by the server and may not
be aware of the missing leaf.

SHOULD NOT

SHOULD NOT

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 41

The YANG "boolean" data type provides two values ("true" and "false"). When used within a list
key, two entries can exist for this key leaf. Default values are ignored for key leafs, but a default
statement is often used for plain boolean leafs. The advantage of the "boolean" type is that the
leaf or leaf-list has a clear representation for both values. The default value is usually not
returned unless explicitly requested by the client, so no bytes are used in a typical
representation.

In general, the "boolean" data type be used instead of the "empty" data type, as shown
in the example below:

Incorrect:

Correct:

SHOULD

 leaf flag1 {
 type empty;
 }

 leaf flag2 {
 type boolean;
 default false;
 }

4.12. Reusable Type Definitions
If an appropriate derived type exists in any standard module, such as , then it
be used instead of defining a new derived type.

If an appropriate units identifier can be associated with the desired semantics, then a units
statement be present.

If an appropriate default value can be associated with the desired semantics, then a default
statement be present.

If a significant number of derived types are defined, and it is anticipated that these data types
will be reused by multiple modules, then these derived types be contained in a separate
module or submodule to allow easier reuse without unnecessary coupling.

The "description" statement be present.

If the type definition semantics are defined in an external document (other than another YANG
module indicated by an import statement), then the reference statement be present.

[RFC6991] SHOULD

SHOULD

SHOULD

SHOULD

MUST

MUST

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 42

4.13. Reusable Groupings
A reusable grouping is a YANG grouping that can be imported by another module and is
intended for use by other modules. This is not the same as a grouping that is used within the
module in which it is defined, but it happens to be exportable to another module because it is
defined at the top level of the YANG module.

The following guidelines apply to reusable groupings, in order to make them as robust as
possible:

Clearly identify the purpose of the grouping in the "description" statement.
There are five different XPath contexts in YANG (rpc/input, rpc/output, notification, "config
true" data nodes, and all data nodes). Clearly identify which XPath contexts are applicable
or excluded for the grouping.
Do not reference data outside the grouping in any "path", "must", or "when" statements.
Do not include a "default" substatement on a leaf or choice unless the value applies on all
possible contexts.
Do not include a "config" substatement on a data node unless the value applies on all
possible contexts.
Clearly identify any external dependencies in the grouping "description" statement, such as
nodes referenced by an absolute path from a "path", "must", or "when" statement.

•
•

•
•

•

•

4.14. Data Definitions
The "description" statement be present in the following YANG statements:

anydata
anyxml
augment
choice
container
extension
feature
grouping
identity
leaf
leaf-list
list
notification
rpc
typedef

MUST

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 43

If the data definition semantics are defined in an external document, (other than another YANG
module indicated by an import statement), then a reference statement be present.

The "anyxml" construct may be useful to represent an HTML banner containing markup
elements, such as "" and "", and be used in such cases. However, this construct

 be used if other YANG data node types can be used instead to represent the desired
syntax and semantics.

It has been found that the "anyxml" statement is not implemented consistently across all servers.
It is possible that mixed-mode XML will not be supported or that configuration anyxml nodes
will not be supported.

If there are referential integrity constraints associated with the desired semantics that can be
represented with XPath, then one or more "must" statements be present.

For list and leaf-list data definitions, if the number of possible instances is required to be
bounded for all implementations, then the max-elements statements be present.

If any "must" or "when" statements are used within the data definition, then the data definition
"description" statement describe the purpose of each one.

The "choice" statement is allowed to be directly present within a "case" statement in YANG 1.1.
This needs to be considered carefully. Consider simply including the nested "choice" as
additional "case" statements within the parent "choice" statement. Note that the "mandatory"
and "default" statements within a nested "choice" statement only apply if the "case" containing
the nested "choice" statement is first selected.

If a list defines any key leafs, then these leafs be defined in order, as the first child
nodes within the list. The key leafs be in a different order in some cases, e.g., they are
defined in a grouping, and not inline in the list statement.

MUST

MAY
SHOULD NOT

SHOULD

SHOULD

SHOULD

SHOULD
MAY

4.14.1. Non-Presence Containers

A non-presence container is used to organize data into specific subtrees. It is not intended to
have semantics within the data model beyond this purpose, although YANG allows it (e.g., a
"must" statement within the non-presence container).

Example using container wrappers:

Example without container wrappers:

 container top {
 container foos {
 list foo { ... }
 }
 container bars {
 list bar { ... }
 }
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 44

Use of non-presence containers to organize data is a subjective matter similar to use of
subdirectories in a file system. Although these containers do not have any semantics, they can
impact protocol operations for the descendant data nodes within a non-presence container, so
use of these containers be considered carefully.

The NETCONF and RESTCONF protocols do not currently support the ability to delete all list (or
leaf-list) entries at once. This deficiency is sometimes avoided by use of a parent container (i.e.,
deleting the container also removes all child entries).

 container top {
 list foo { ... }
 list bar { ... }
 }

SHOULD

4.14.2. Top-Level Data Nodes

Use of top-level objects needs to be considered carefully:

top-level siblings are not ordered
top-level siblings are not static and depend on the modules that are loaded
for subtree filtering, retrieval of a top-level leaf-list will be treated as a content-match node
for all top-level-siblings
a top-level list with many instances may impact performance

•
•
•

•

4.15. Operation Definitions
If the operation semantics are defined in an external document (other than another YANG
module indicated by an import statement), then a reference statement be present.

If the operation impacts system behavior in some way, it be mentioned in the
"description" statement.

If the operation is potentially harmful to system behavior in some way, it be mentioned in
the Security Considerations section of the document.

MUST

SHOULD

MUST

4.16. Notification Definitions
The "description" statement be present.

If the notification semantics are defined in an external document (other than another YANG
module indicated by an import statement), then a reference statement be present.

If the notification refers to a specific resource instance, then this instance be identified
in the notification data. This is usually done by including "leafref" leaf nodes with the key leaf
values for the resource instance. For example:

MUST

MUST

SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 45

Note that there are no formal YANG statements to identify any data node resources associated
with a notification. The "description" statement for the notification specify if and how
the notification identifies any data node resources associated with the specific event.

 notification interface-up {
 description "Sent when an interface is activated.";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 }

SHOULD

4.17. Feature Definitions
The YANG "feature" statement is used to define a label for a set of optional functionality within a
module. The "if-feature" statement is used in the YANG statements associated with a feature. The
description-stmt within a feature-stmt specify any interactions with other features.

The set of YANG features defined in a module should be considered carefully. Very fine granular
features increase interoperability complexity and should be avoided. A likely misuse of the
feature mechanism is the tagging of individual leafs (e.g., counters) with separate features.

If there is a large set of objects associated with a YANG feature, then consider moving those
objects to a separate module instead of using a YANG feature. Note that the set of features within
a module is easily discovered by the reader, but the set of related modules within the entire
YANG library is not as easy to identify. Module names with a common prefix can help readers
identify the set of related modules, but this assumes the reader will have discovered and
installed all the relevant modules.

Another consideration for deciding whether to create a new module or add a YANG feature is
the stability of the module in question. It may be desirable to have a stable base module that is
not changed frequently. If new functionality is placed in a separate module, then the base
module does not need to be republished. If it is designed as a YANG feature, then the module will
need to be republished.

If one feature requires implementation of another feature, then an "if-feature" statement
 be used in the dependent "feature" statement.

For example, feature2 requires implementation of feature1:

MUST

SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 46

 feature feature1 {
 description "Some protocol feature";
 }

 feature feature2 {
 if-feature "feature1";
 description "Another protocol feature";
 }

4.18. YANG Data Node Constraints

4.18.1. Controlling Quantity

The "min-elements" and "max-elements" statements can be used to control how many list or leaf-
list instances are required for a particular data node. YANG constraint statements be
used to identify conditions that apply to all implementations of the data model. If platform-
specific limitations (e.g., the "max-elements" supported for a particular list) are relevant to
operations, then a data model definition statement (e.g., "max-ports" leaf) be used to
identify the limit.

SHOULD

SHOULD

4.18.2. "must" versus "when"

"must" and "when" YANG statements are used to provide cross-object referential tests. They have
very different behavior. The "when" statement causes data node instances to be silently deleted
as soon as the condition becomes false. A false "when" expression is not considered to be an
error.

The "when" statement be used together with "augment" or "uses" statements to achieve
conditional model composition. The condition be based on static properties of the
augmented entry (e.g., list key leafs).

The "must" statement causes a datastore validation error if the condition is false. This statement
 be used for enforcing parameter value restrictions that involve more than one data

node (e.g., end-time parameter must be after the start-time parameter).

SHOULD
SHOULD

SHOULD

4.19. "augment" Statements
The YANG "augment" statement is used to define a set of data definition statements that will be
added as child nodes of a target data node. The module namespace for these data nodes will be
the augmenting module, not the augmented module.

A top-level "augment" statement be used if the target data node is in the same
module or submodule as the evaluated "augment" statement. The data definition statements

 be added inline instead.

SHOULD NOT

SHOULD

4.19.1. Conditional Augment Statements

The "augment" statement is often used together with the "when" statement and/or "if-feature"
statement to make the augmentation conditional on some portion of the data model.

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 47

The following example from shows how a conditional container called "ethernet" is
added to the "interface" list only for entries of the type "ethernetCsmacd".

[RFC8343]

 augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:ethernetCsmacd'";

 container ethernet {
 leaf duplex {
 ...
 }
 }
 }

4.19.2. Conditionally Mandatory Data Definition Statements

YANG has very specific rules about how configuration data can be updated in new releases of a
module. These rules allow an "old client" to continue interoperating with a "new server".

If data nodes are added to an existing entry, the old client be required to provide any
mandatory parameters that were not in the original module definition.

It is possible to add conditional "augment" statements such that the old client would not know
about the new condition and would not specify the new condition. The conditional "augment"
statement can contain mandatory objects only if the condition is false, unless explicitly
requested by the client.

Only a conditional "augment" statement that uses the "when" statement form of a condition can
be used in this manner. The YANG features enabled on the server cannot be controlled by the
client in any way, so it is not safe to add mandatory augmenting data nodes based on the "if-
feature" statement.

The XPath "when" statement condition reference data outside of the target data node
because the client does not have any control over this external data.

In the following sample, it is okay to augment the "interface" entry with "mandatory-leaf"
because the augmentation depends on support for "some-new-iftype". The old client does not
know about this type, so it would never select this type; therefore, it would not add a mandatory
data node.

MUST NOT

MUST NOT

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 48

Note that this practice is safe only for creating data resources. It is not safe for replacing or
modifying resources if the client does not know about the new condition. The YANG data model

 be packaged in a way that requires the client to be aware of the mandatory data nodes if it
is aware of the condition for this data. In the example above, the "some-new-iftype" identity is
defined in the same module as the "mandatory-leaf" data definition statement.

This practice is not safe for identities defined in a common module such as "iana-if-type"
because the client is not required to know about "my-module" just because it knows about the
"iana-if-type" module.

 module example-module {

 yang-version 1.1;
 namespace "tag:example.com,2017:example-module";
 prefix mymod;

 import iana-if-type { prefix iana; }
 import ietf-interfaces { prefix if; }

 identity some-new-iftype {
 base iana:iana-interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = 'mymod:some-new-iftype'";

 leaf mandatory-leaf {
 type string;
 mandatory true;
 }
 }
 }

MUST

4.20. Deviation Statements
Per , the YANG "deviation" statement is not allowed to appear in IETF
YANG modules, but it can be useful for documenting server capabilities. Deviation statements
are not reusable and typically not shared across all platforms.

There are several reasons that deviations might be needed in an implementation, e.g., an object
cannot be supported on all platforms, or feature delivery is done in multiple development
phases. Deviation statements can also be used to add annotations to a module, which does not
affect the conformance requirements for the module.

It is suggested that deviation statements be defined in separate modules from regular YANG
definitions. This allows the deviations to be platform specific and/or temporary.

The order that deviation statements are evaluated can affect the result. Therefore, multiple
deviation statements in the same module, for the same target object, be used.

Section 7.20.3 of [RFC7950]

SHOULD NOT

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 49

https://www.rfc-editor.org/rfc/rfc7950#section-7.20.3

The "max-elements" statement is intended to describe an architectural limit to the number of list
entries. It is not intended to describe platform limitations. It is better to use a "deviation"
statement for the platforms that have a hard resource limit.

Example documenting platform resource limits:

Wrong: (max-elements in the list itself)

Correct: (max-elements in a deviation)

 container backups {
 list backup {
 ...
 max-elements 10;
 ...
 }
 }

 deviation /bk:backups/bk:backup {
 deviate add {
 max-elements 10;
 }
 }

4.21. Extension Statements
The YANG "extension" statement is used to specify external definitions. This appears in the YANG
syntax as an "unknown-statement". Usage of extension statements in a published module needs
to be considered carefully.

The following guidelines apply to the usage of YANG extensions:

The semantics of the extension contradict any YANG statements. Extensions can
add semantics not covered by the normal YANG statements.
The module containing the extension statement clearly identify the conformance
requirements for the extension. It should be clear whether all implementations of the YANG
module containing the extension need to also implement the extension. If not, identify what
conditions apply that would require implementation of the extension.
The extension clearly identify where it can be used within other YANG statements.
The extension clearly identify if YANG statements or other extensions are allowed or
required within the extension as substatements.

• MUST NOT

• MUST

• MUST

• MUST

4.22. Data Correlation
Data can be correlated in various ways, using common data types, common data naming, and
common data organization. There are several ways to extend the functionality of a module,
based on the degree of coupling between the old and new functionality:

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 50

inline:

augment:

mirror:

update the module with new protocol-accessible objects. The naming and data
organization of the original objects is used. The new objects are in the original module
namespace.

create a new module with new protocol-accessible objects that augment the original
data structure. The naming and data organization of the original objects is used. The new
objects are in the new module namespace.

create new objects in a new module or the original module, except use a new naming
scheme and data location. The naming can be coupled in different ways. Tight coupling is
achieved with a "leafref" data type, with the "require-instance" substatement set to "true".
This method be used.

If the new data instances are not limited to the values in use in the original data structure, then
the "require-instance" substatement be set to "false". Loose coupling is achieved by using
key leafs with the same data type as the original data structure. This has the same semantics as
setting the "require-instance" substatement to "false".

The relationship between configuration and operational state has been clarified in NMDA
.

SHOULD

MUST

[RFC8342]

4.22.1. Use of "leafref" for Key Correlation

Sometimes it is not practical to augment a data structure. For example, the correlated data could
have different keys or contain mandatory nodes.

The following example shows the use of the "leafref" data type for data correlation purposes:

Not preferred:

Preferred:

 list foo {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 list foo-addon {
 key name;
 config false;
 leaf name {
 type string;
 }
 ...
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 51

 list foo {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 list foo-addon {
 key name;
 config false;
 leaf name {
 type leafref {
 path "/foo/name";
 require-instance false;
 }
 }
 leaf addon {
 type string;
 mandatory true;
 }
 }

4.23. Operational State
The modeling of operational state with YANG has been refined over time. At first, only data that
has a "config" statement value of "false" was considered to be operational state. This data was
not considered to be part of any datastore, which made the YANG XPath definition much more
complicated.

Operational state is now modeled using YANG according to the NMDA and
conceptually contained in the operational state datastore, which also includes the operational
values of configuration data. There is no longer any need to duplicate data structures to provide
separate configuration and operational state sections.

This section describes some data modeling issues related to operational state and guidelines for
transitioning YANG data model design to be NMDA compatible.

[RFC8342]

4.23.1. Combining Operational State and Configuration Data

If possible, operational state be combined with its associated configuration data. This
prevents duplication of key leafs and ancestor nodes. It also prevents race conditions for
retrieval of dynamic entries and allows configuration and operational state to be retrieved
together with minimal message overhead.

SHOULD

 container foo {
 ...
 // contains "config true" and "config false" nodes that have
 // no corresponding "config true" object (e.g., counters)
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 52

4.23.2. Representing Operational Values of Configuration Data

If possible, the same data type be used to represent the configured value and the
operational value, for a given leaf or leaf- list object.

Sometimes the configured value set is different than the operational value set for that object, for
example, the "admin-status" and "oper-status" leafs in . In this case, a separate object

 be used to represent the configured and operational values.

Sometimes the list keys are not identical for configuration data and the corresponding
operational state. In this case, separate lists be used to represent the configured and
operational values.

If it is not possible to combine configuration and operational state, then the keys used to
represent list entries be the same type. The "leafref" data type be used in
operational state for key leafs that have corresponding configuration instances. The "require-
instance" statement be set to "false" (in YANG 1.1 modules only) to indicate instances are
allowed in the operational state that do not exist in the associated configuration data.

The need to replicate objects or define different operational state objects depends on the data
model. It is not possible to define one approach that will be optimal for all data models.

Designers describe and justify any NMDA exceptions in detail, such as the use of
separate subtrees and/or separate leafs. The "description" statements for both the configuration
and the operational state be used for this purpose.

SHOULD

[RFC8343]
MAY

MAY

SHOULD SHOULD

MAY

SHOULD

SHOULD

(a)

4.23.3. NMDA Transition Guidelines

YANG modules be designed with the assumption that they will be used on servers
supporting the operational state datastore. With this in mind, YANG modules define
"config false" nodes wherever they make sense to the data model. "Config false" nodes

 be defined to provide the operational value for configuration nodes, except when the value
space of a configured and operational value may differ, in which case a distinct "config false"
node be defined to hold the operational value for the configured node.

The following guidelines are meant to help modelers develop YANG modules that will maximize
the utility of the model with both current and new implementations.

New modules and modules that are not concerned with the operational state of configuration
information immediately be structured to be NMDA compatible, as described in Section
4.23.1. This transition be deferred if the module does not contain any configuration
datastore objects.

The remaining are options that be followed during the time that NMDA mechanisms are
being defined.

SHOULD
SHOULD

SHOULD
NOT

SHOULD

SHOULD
MAY

MAY

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 53

(b)

(c)

Modules that require immediate support for the NMDA features be structured for
NMDA. A temporary non-NMDA version of this type of module exist, as either an
existing model or a model created by hand or with suitable tools that mirror the current
modeling strategies. Both the NMDA and the non-NMDA modules be published in
the same document, with NMDA modules in the document main body and the non-NMDA
modules in a non-normative appendix. The use of the non-NMDA module will allow
temporary bridging of the time period until NMDA implementations are available.

For published models, the model should be republished with an NMDA-compatible
structure, deprecating non-NMDA constructs. For example, the "ietf-interfaces" model in

 has been restructured as an NMDA-compatible model in (which
obsoletes). The "/interfaces-state" hierarchy has been marked "status
deprecated". Models that mark their "/foo-state" hierarchy with "status deprecated" will
allow NMDA-capable implementations to avoid the cost of duplicating the state nodes,
while enabling non-NMDA-capable implementations to utilize them for access to the
operational values.

For models that augment models that have not been structured with the NMDA, the
modeler will have to consider the structure of the base model and the guidelines listed
above. Where possible, such models should move to new revisions of the base model that
are NMDA compatible. When that is not possible, augmenting "state" containers
be avoided, with the expectation that the base model will be re-released with the state
containers marked as deprecated. It is to augment only the "/foo"
hierarchy of the base model. Where this recommendation cannot be followed, any new
"state" elements be included in their own module.

SHOULD
MAY

SHOULD

[RFC7223] [RFC8343]
[RFC7223]

SHOULD

RECOMMENDED

SHOULD

4.23.3.1. Temporary Non-NMDA Modules
A temporary non-NMDA module allows a non-NMDA-aware client to access operational state
from an NMDA-compliant server. It contains the top-level "config false" data nodes that would
have been defined in a legacy YANG module (before NMDA).

A server that needs to support both NMDA and non-NMDA clients can advertise both the new
NMDA module and the temporary non-NMDA module. A non-NMDA client can use separate "foo"
and "foo-state" subtrees, except the "foo-state" subtree is located in a different (temporary)
module. The NMDA module can be used by a non-NMDA client to access the conventional
configuration datastores and the deprecated <get> operation to access nested "config false" data
nodes.

To create the temporary non-NMDA model from an NMDA model, the following steps can be
taken:

Change the module name by appending "-state" to the original module name.
Change the namespace by appending "-state" to the original namespace value.
Change the prefix by appending "-s" to the original prefix value.
Add an import to the original module (e.g., for typedef definitions).

•
•
•
•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 54

Retain or create only the top-level nodes that have a "config" statement value "false". These
subtrees represent "config false" data nodes that were combined into the configuration
subtree; therefore, they are not available to non-NMDA-aware clients. Set the "status"
statement to "deprecated" for each new node.
The module description clearly identify the module as a temporary non-NMDA
module.

•

• SHOULD

4.23.3.2. Example: Create a New NMDA Module
Create an NMDA-compliant module, using combined configuration and state subtrees, whenever
possible.

 module example-foo {
 namespace "urn:example:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 // operational value in operational state datastore only
 // may contain "config false" nodes as needed
 }
 }

4.23.3.3. Example: Convert an Old Non-NMDA Module
Do not remove non-compliant objects from existing modules. Instead, change the status to
"deprecated". At some point, usually after 1 year, the status be changed to "obsolete".

Old Module:

Converted NMDA Module:

MAY

 module example-foo {
 namespace "urn:example:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 }

 container foo-state {
 config false;
 // operational state child nodes
 }
 }

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 55

 module example-foo {
 namespace "urn:example:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 // operational value in operational state datastore only
 // may contain "config false" nodes as needed
 // will contain any data nodes from old foo-state
 }

 // keep original foo-state but change status to deprecated
 container foo-state {
 config false;
 status deprecated;
 // operational state child nodes
 }
 }

4.23.3.4. Example: Create a Temporary NMDA Module
Create a new module that contains the top-level operational state data nodes that would have
been available before they were combined with configuration data nodes (to be NMDA
compliant).

 module example-foo-state {
 namespace "urn:example:params:xml:ns:yang:example-foo-state";
 prefix "foo-s";

 // import new or converted module; not used in this example
 import example-foo { prefix foo; }

 container foo-state {
 config false;
 status deprecated;
 // operational state child nodes
 }
 }

4.24. Performance Considerations
It is generally likely that certain YANG statements require more runtime resources than other
statements. Although there are no performance requirements for YANG validation, the following
information be considered when designing YANG data models:

Lists are generally more expensive than containers
"when" statement evaluation is generally more expensive than "if-feature" or "choice"
statements
"must" statements are generally more expensive than "min-elements", "max-elements",
"mandatory", or "unique" statements

MAY

•
•

•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 56

"identityref" leafs are generally more expensive than "enumeration" leafs
"leafref" and "instance-identifier" types with "require-instance" set to "true" are generally
more expensive than if "require-instance" is set to "false"

•
•

4.25. Open Systems Considerations
Only the modules imported by a particular module can be assumed to be present in an
implementation. An open system include any combination of YANG modules.MAY

4.26. Guidelines for Constructs Specific to YANG 1.1
The set of guidelines for YANG 1.1 will grow as operational experience is gained with the new
language features. This section contains an initial set of guidelines for new YANG 1.1 language
features.

4.26.1. Importing Multiple Revisions

Standard modules import multiple revisions of the same module into a module.
This be done if independent definitions (e.g., enumeration typedefs) from specific revisions
are needed in the importing module.

SHOULD NOT
MAY

4.26.2. Using Feature Logic

The YANG 1.1 feature logic is much more expressive than YANG 1.0. A "description" statement
 describe the "if-feature" logic in text, to help readers understand the module.

YANG features be used instead of the "when" statement, if possible. Features are
advertised by the server, and objects conditional by the "if-feature" statement are conceptually
grouped together. There is no such commonality supported for "when" statements.

Features generally require less server implementation complexity and runtime resources than
objects that use "when" statements. Features are generally static (i.e., set when a module is
loaded and not changed at runtime). However, every client edit might cause a "when" statement
result to change.

SHOULD

SHOULD

4.26.3. "anyxml" versus "anydata"

The "anyxml" statement be used to represent a conceptual subtree of YANG data
nodes. The "anydata" statement be used for this purpose.

MUST NOT
MUST

4.26.4. "action" versus "rpc"

The use of "action" statements or "rpc" statements is a subjective design decision. RPC operations
are not associated with any particular data node. Actions are associated with a specific data
node definition. An "action" statement be used if the protocol operation is specific to a
subset of all data nodes instead of all possible data nodes.

SHOULD

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 57

The same action name be used in different definitions within different data node. For
example, a "reset" action defined with a data node definition for an interface might have
different parameters than for a power supply or a VLAN. The same action name be
used to represent similar semantics.

The NETCONF Access Control Model (NACM) does not support parameter-based access
control for RPC operations. The user is given permission (or not) to invoke the RPC operation
with any parameters. For example, if each client is only allowed to reset their own interface,
then NACM cannot be used.

For example, NACM cannot enforce access control based on the value of the "interface"
parameter, only the "reset" operation itself:

However, NACM can enforce access control for individual interface instances, using a "reset"
action. If the user does not have read access to the specific "interface" instance, then it cannot
invoke the "reset" action for that interface instance:

MAY

SHOULD

[RFC8341]

 rpc reset {
 input {
 leaf interface {
 type if:interface-ref;
 mandatory true;
 description "The interface to reset.";
 }
 }
 }

 container interfaces {
 list interface {
 ...
 action reset { }
 }
 }

4.27. Updating YANG Modules (Published versus Unpublished)
YANG modules can change over time. Typically, new data model definitions are needed to
support new features. YANG update rules defined in be followed
for published modules. They be followed for unpublished modules.

The YANG update rules only apply to published module revisions. Each organization will have
their own way to identify published work that is considered to be stable and unpublished work
that is considered to be unstable. For example, in the IETF, an RFC is used for published work,
and an I-D is used for unpublished work.

Section 11 of [RFC7950] MUST
MAY

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 58

https://www.rfc-editor.org/rfc/rfc7950#section-11

4.28. Defining Standard Tags
 specifies a method for associating tags with YANG modules. Tags may be defined and

associated at the time of module design, at the time of implementation, or via user
administrative control. Design-time tags are indicated using the module-tag extension statement.

A module indicate, using module-tag extension statements, a set of tags that are to be
automatically associated with it (i.e., not added through configuration).

Authors can use existing standard tags or use new tags defined in the model definition, as
appropriate. For IETF modules, new tags be assigned in the IANA "IETF YANG Module
Tags" registry within the "YANG Module Tags" registry group .

[RFC8819]

MAY

module example-module {
 namespace "https://example.com/yang/example";
 prefix "ex";
 //...
 import module-tags { prefix tags; }

 tags:module-tag "ietf:some-new-tag";
 tags:module-tag "ietf:some-other-tag";
 // ...
}

MUST
[IANA-TAGS]

4.29. Modeling Abstract Data Structures
For contexts where YANG is used to model abstract data structures (e.g., protocol messages), the
use of the "structure" extension statement is compared to the "yang-
data" extension statement . Examples of modules that rely upon the "structure"
extension statement from can be found in or .

Abstract data structures can be augmented using the "augment-structure" statement .
Examples of modules that augment abstract data structures can be found in and

.

[RFC8791] RECOMMENDED
[RFC8040]
[RFC8791] [RFC9132] [RFC9195]

[RFC8791]
[RFC9244]

[RFC9362]

4.30. IANA-Maintained Modules

4.30.1. Context

IANA maintains a set of registries that are key for interoperability. The content of these registries
is usually available using various formats (e.g., plain text or XML). However, there was some
confusion in the past about whether the content of some registries is dependent on a specific
representation format. For example, was published to clarify that MIB
and YANG modules are merely additional formats in which the "Interface Types (ifType)" and
"Tunnel Types (tunnelType)" registries are available. The MIB and YANG modules
() are not separate registries, and the same values are always present in all
formats of the same registry.

Section 5 of [RFC8892]

[RFC2863]
[RFC7224] [RFC8675]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 59

https://www.rfc-editor.org/rfc/rfc8892#section-5

A design in which a YANG module includes parameters and values directly in a module that is
not maintained by IANA while these are populated in an IANA registry could lead to ambiguity
and maintain stale information. Such a design creates another source of information that may
deviate from the IANA registry as new values are assigned or some values are deprecated.

For the sake of consistency and the ability to support new values while maintaining IANA
registries as the unique authoritative source of information, this document recommends the use
of IANA-maintained modules as the single source of information.

The following section provides a set of guidelines for YANG module authors related to the design
of IANA-maintained modules. These guidelines are meant to leverage existing IANA registries
and use YANG as another format to present the content of these registries when appropriate.

4.30.2. Guidelines for IANA-Maintained Modules

When designing a YANG module for a functionality governed by a protocol for which IANA
maintains a registry, it is to specify an IANA-maintained module that echoes the
content of that registry. This is superior to including that content in an IETF-maintained module.

When one or multiple registries are available under the same registry group, it is
 to define an IANA-maintained module for each registry. However, module

designers consider defining one single IANA-maintained module that covers all registries if
maintaining that single module is manageable (e.g., very few values are present or expected to
be present for each registry). An example of such a module is documented in

.

An IANA-maintained module may use the "identityref" data type (e.g.,) or an
enumeration data type (e.g.,). See Section 4.11.1 for a guidance on which data type to
use. The decision about which type to use should be made based upon specifics related to the
intended use of the IANA-maintained module. For example, identities are useful if the registry
entries are organized hierarchically, possibly including multiple inheritances. The reasoning for
the design choice be documented in the companion specification that registers an IANA-
maintained module. For example, defines an IANA-maintained module that uses
enumerations for the following reason:

The DOTS telemetry module (Section 11.1) uses "enumerations" rather than "identities"
to define units, samples, and intervals because otherwise the namespace identifier "ietf-
dots-telemetry" must be included when a telemetry attribute is included (e.g., in a
mitigation efficacy update). The use of "identities" is thus suboptimal from the
standpoint of message compactness, as message compactness is one of the key
requirements for DOTS signal channel messages.

Designers of IANA-maintained modules supply the full initial version of the module in a
specification document that registers the module or only a script to be used (including by IANA)
for generating the module (e.g., an Extensible Stylesheet Language Transformations (XSLT)
stylesheet as in or a Python script as in). For both cases, the

RECOMMENDED

RECOMMENDED
MAY

Section 5.2 of
[RFC9132]

[RFC8675]
[RFC9108]

MUST
[RFC9244]

MAY

Appendix A of [RFC9108] [RFC9645]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 60

https://www.rfc-editor.org/rfc/rfc9132#section-5.2
https://www.rfc-editor.org/rfc/rfc9244#section-11.1
https://www.rfc-editor.org/rfc/rfc9108#appendix-A

document that defines an IANA-maintained module include a note indicating that the
document is only documenting the initial version of the module and that the authoritative
version is to be retrieved from the IANA registry. Also, the IANA-maintained module
include the following note indicating the RFC that registered the initial version of the IANA-
maintained module:

The initial version of this YANG module is part of RFC IIII; see the RFC itself for full legal
notices.

It is to include the URL from where to retrieve the recent version of the module.
When a script is used, the Internet-Draft that defines an IANA-maintained module has to include
an appendix with the full script and include an appendix with the initial full version of
the module. Including such an appendix in pre-RFC versions is meant to assess the correctness
of the outcome of the supplied script. The authors include a note to the RFC Editor
requesting that the appendix with the initial version of the module be removed before
publication as RFC and that RFC IIII is replaced with the RFC number that is assigned to the
document. Initial versions of IANA-maintained modules that are published in RFCs may be
misused despite the appropriate language to refer to the IANA registry to retrieve the up-to-date
module. This is problematic for interoperability, e.g., when values are deprecated or are
associated with a new meaning.

Note: provides XSLT 1.0 stylesheets and other tools for translating IANA
registries to YANG modules. The tools can be used to generate up-to-date revisions
of an IANA-maintained module based upon the XML representation of an IANA
registry.

If an IANA-maintained module is imported by another module, a normative reference with the
IANA URL from which to retrieve the IANA-maintained module be included. Although
not encouraged, referencing the RFC that defines the initial version of the IANA module is
acceptable in specific cases (e.g., the imported version is specifically the initial version, the RFC
includes useful description about the usage of the module).

Examples of IANA URLs from which to retrieve the latest version of an IANA-maintained module
are as follows: , , and .
"IANA_FOO_URL" is used in the following to refer to such URLs. These URLs are expected to be
sufficiently permanent and stable. Whenever referencing a specific version of an IANA-
maintained module is needed, then URLs such as are used.
"IANA_FOO_URL_With_REV" is used in the following to refer to such URLs.

A template for IANA-maintained modules is provided in Appendix C.

MUST

MUST

RECOMMENDED

SHOULD

MUST

[Style]

SHOULD

[IANA_BGP-L2_URL] [IANA_PW-Types_URL] [IANA_BFD_URL]

[IANA_BGP-L2_URL-Revision]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 61

4.30.3. Guidance for Writing the IANA Considerations for RFCs Defining IANA-Maintained
Modules

In addition to the IANA considerations in Section 3.8, the IANA Considerations section of an RFC
that includes an IANA-maintained module provide the required instructions for IANA to
automatically perform the maintenance of that IANA module. These instructions describe how
to proceed with updates to the IANA-maintained module that are triggered by a change to the
authoritative registry. Concretely, the IANA Considerations section at least provide the
following information:

A request to IANA to add a note to the page displaying the information about the IANA-
maintained module that new values must not be directly added to the module. These values
should be added to an authoritative IANA registry.
A request to IANA to add a note to the authoritative IANA registry to indicate that any
change to the registry must be reflected into the corresponding IANA-maintained module.
That is, any changes to the registry must be accompanied by an update to the corresponding
IANA-maintained module.
Details about the required actions (e.g., add a new "identity" or "enum" statement) to update
the IANA-maintained module to reflect changes to an authoritative IANA registry. Typically,
these details have to include the procedure to create a new "identity" statement name and
substatements ("base", "status", "description", and "reference") or a new "enum" statement
and substatements ("value", "status", "description", and "reference").

When creating a new "identity" statement name or a new "enum" statement, it is
 to use the same name (if present) as recorded in the IANA registry.

If the name in the IANA registry does not comply with the naming conventions listed in
Section 4.3.1, the procedure detail how IANA can generate legal identifiers from
such a name. Specifically, if the name begins with a number, it is to spell
out (i.e., write in full) the number when used as an identifier. IANA should be provided
with instructions to perform such a task. For example, authors of a module with such
identifiers have to indicate whether:

"3des-cbc" should be "three-des-cbc" or rather "triple-des-cbc" to be consistent with
.

"6to4" should be "sixToFour" as in or "sixtofour" as in .

If a new registration uses an identifier that does not comply with the naming conventions
listed in Section 4.3.1, IANA should check if guidance to generate legal identifiers was
supplied in the RFC that specified the initial version of the module. If no such guidance is
available, IANA should check the latest revision of the IANA-maintained module for
similar patterns. If all else fails, IANA should seek advice from relevant registry experts
(e.g., designated experts for a registry using the Expert Review policy (

) or responsible area director).

A note that unassigned or reserved values must not be present in the IANA-maintained
module.

MUST

SHALL

•

•

•

◦
RECOMMENDED

◦
MUST

RECOMMENDED

▪
Section 6.3 of [RFC4253]

▪ [RFC7224] [RFC8675]

◦

Section 4.5 of
[RFC8126]

•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 62

https://www.rfc-editor.org/rfc/rfc4253#section-6.3
https://www.rfc-editor.org/rfc/rfc8126#section-4.5

An instruction whether experimental values should be included in the IANA-maintained
module. If no instruction is provided, experimental values be listed in the IANA-
maintained module.
An instruction about how to generate the "revision" statement.

A template for the IANA Considerations is provided in Section 4.30.3.1 for IANA-maintained
modules with identities and Section 4.30.3.2 for IANA-maintained modules with enumerations.
Authors may modify the template to reflect specifics of their modules (e.g., multiple registries
can be listed for a single IANA-maintained module, no explicit description (or name) field is
listed under the authoritative IANA registry, or the name does not comply with YANG naming
conventions (Section 4.3.1)).

An example of "revision" statements that are generated following the guidance in Section 4.30.3.1
is provided below:

•
MUST NOT

•

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 63

Duplicating the same reference at the high level and at the level of a new addition might be
redundant. For example, the following does not provide access to a specific (OLD) revision of the
module when future revisions are made :

 revision 2023-11-27 {
 description
 "Registered RR Type RESINFO 261.";
 reference
 "https://www.iana.org/assignments/yang-parameters/"
 + "iana-dns-class-rr-type@2023-11-27.yang";
 }

 revision 2023-11-08 {
 description
 "Updated description and replaced draft string reference to
 64 and 65 with RFC 9460: Service Binding and Parameter
 Specification via the DNS (SVCB and HTTPS Resource Records).";
 reference
 "RFC 9460: Service Binding and Parameter Specification via the
 DNS (SVCB and HTTPS Resource Records)
 https://www.iana.org/assignments/yang-parameters/"
 + "iana-dns-class-rr-type@2023-11-08.yang";
 }

 revision 2023-04-25 {
 description
 "Updated reference for 64 and 65.";
 reference
 "https://www.iana.org/assignments/yang-parameters/"
 + "iana-dns-class-rr-type@2023-04-25.yang";
 }

 revision 2022-05-30 {
 description
 "Updated description, reference for 64 and 65.";
 reference
 "https://www.iana.org/assignments/yang-parameters/"
 + "iana-dns-class-rr-type@2022-05-30.yang";
 }

 revision 2021-08-31 {
 description
 "Initial revision.";
 reference
 "RFC 9108: YANG Types for DNS Classes and Resource Record
 Types";
 }

[IANA_Tunnel_Type_URL]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 64

The following example shows how to generate the "revision" statements following the guidance
in Section 4.30.3.1:

The templates in the following subsections are to be considered in addition to the required
information that is provided in Section 3.8.

revision 2021-04-23 {
 description
 "Registered tunnelType 19.";
 reference
 "RFC 4301: Security Architecture for the Internet Protocol";
}

revision 2019-11-16 {
 description
 "Initial revision.";
 reference
 "RFC 8675: A YANG Data Model for Tunnel Interface Types";
}

...

identity ipsectunnelmode {
 base ift:tunnel;
 description
 "IPsec tunnel mode encapsulation.";
 reference
 "RFC 4301: Security Architecture for the Internet Protocol";
}

revision 2021-04-23 {
 description
 "Registered tunnelType 19.";
 reference
 "https://www.iana.org/assignments/yang-parameters/"
 + "iana-tunnel-type@2021-04-23.yang
 RFC 4301: Security Architecture for the Internet Protocol";
}

revision 2019-11-16 {
 description
 "Initial revision.";
 reference
 "RFC 8675: A YANG Data Model for Tunnel Interface Types";
}
...
identity ipsectunnelmode {
 base ift:tunnel;
 description
 "IPsec tunnel mode encapsulation.";
 reference
 "RFC 4301: Security Architecture for the Internet Protocol";
}

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 65

4.30.3.1. Template for IANA-Maintained Modules with Identities

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 66

<CODE BEGINS>

This document defines the initial version of the IANA-maintained
"iana-foo" YANG module. The most recent version of the YANG module
is available from the "YANG Parameters" registry group
[IANA-YANG-PARAMETERS].

IANA is requested to add this note to the registry:

 New values must not be directly added to the "iana-foo" YANG
 module. They must instead be added to the "foo" registry.

When a value is added to the "foo" registry, a new "identity"
statement needs to be added to the "iana-foo" YANG module. The name
of the "identity" MUST be the name as provided in the registry.
The "identity" statement should have the following
substatements defined:

 "base": Contains 'name-base-identity-defined-in-foo'.

 "status": Include only if a registration has been deprecated or
 obsoleted. IANA "deprecated" maps to YANG status
 "deprecated", and IANA "obsolete" maps to YANG status
 "obsolete".

 "description": Replicates the description from the registry.

 "reference": Replicates the reference(s) from the registry with
 the title of the document(s) added.

Unassigned or reserved values are not present in the module.

When the "iana-foo" YANG module is updated, a new "revision"
statement with a unique revision date must be added in front of the
existing "revision" statements. The "revision" statement MUST
contain both "description" and "reference" substatements as follows.

The "description" substatement captures what changed in the
revised version. Typically, the description enumerates the changes
such as udpates to existing entries (e.g., update a description or
a reference) or notes which identities were added or had their status
changed (e.g., deprecated, discouraged, or obsoleted).

 -- When such a description is not feasible, the description varies
 -- on how the update is triggered.

 -- If the update is triggered by an RFC, insert this text:

 The "description" substatement should include this text:
 "Applied updates as specified by RFC XXXX.".

 -- If the update is triggered following other IANA registration
 -- policy (Section 4 of [RFC8126]) but not all the values in the
 -- registry are covered by the same policy, insert this text:

 The "description" substatement should include this text:
 "Applied updates as specified by the registration policy

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 67

 <Some_IANA_policy>".

The "reference" substatement points specifically to the published
module (i.e., IANA_FOO_URL_With_REV). It may also point to an
authoritative event triggering the update to the YANG module. In all
cases, this event is cited from the underlying IANA registry. If the
update is triggered by an RFC, that RFC must also be included in
the "reference" substatement.

 -- If a name in the IANA registry does not comply with the
 -- YANG naming conventions, add details how IANA can generate
 -- legal identifiers. For example, if the name begins with
 -- a number, indicate a preference to spell out the number when
 -- used as an identifier.

IANA is requested to add this note to [reference-to-the-iana-foo-
registry]:

 When this registry is modified, the YANG module "iana-foo"
 [IANA_FOO_URL] must be updated as defined in RFC IIII.

<CODE ENDS>

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 68

4.30.3.2. Template for IANA-Maintained Modules with Enumerations

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 69

<CODE BEGINS>

This document defines the initial version of the IANA-maintained
"iana-foo" YANG module. The most recent version of the YANG module
is available from the "YANG Parameters" registry group
[IANA-YANG-PARAMETERS].

IANA is requested to add this note to the registry:

 New values must not be directly added to the "iana-foo" YANG
 module. They must instead be added to the "foo" registry.

When a value is added to the "foo" registry, a new "enum" statement
must be added to the "iana-foo" YANG module. The "enum" statement,
and substatements thereof, should be defined:

 "enum": Replicates a name from the registry.

 "value": Contains the decimal value of the IANA-assigned
 value.

 "status": Is included only if a registration has been
 deprecated or obsoleted. IANA "deprecated" maps
 to YANG status "deprecated", and IANA "obsolete"
 maps to YANG status "obsolete".

 "description": Replicates the description from the registry.

 "reference": Replicates the reference(s) from the registry with
 the title of the document(s) added.

Unassigned or reserved values are not present in the module.

When the "iana-foo" YANG module is updated, a new "revision"
statement with a unique revision date needs to be added in front of
the existing "revision" statements. The "revision" statement MUST
contain both "description" and "reference" substatements as follows.

The "description" substatement captures what changed in the
revised version. Typically, the description enumerates the changes
such as udpates to existing entries (e.g., update a description or
a reference) or notes which "enums" were added or had their status
changed (e.g., deprecated, discouraged, or obsoleted).

 -- When such a description is not feasible, the description varies
 -- on how the update is triggered.

 -- If the update is triggered by an RFC, insert this text:

 The "description" substatement should include this text:
 "Applied updates as specified by RFC XXXX.".

 -- If the update is triggered following other IANA registration
 -- policy (Section 4 of [RFC8126]) but not all the values in the
 -- registry are covered by the same policy, insert this text:

 The "description" substatement should include this text:

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 70

 "Applied updates as specified by the registration policy
 <Some_IANA_policy>".

The "reference" substatement points specifically to the published
module (i.e., IANA_FOO_URL_With_REV). It may also point to an
authoritative event triggering the update to the YANG module. In all
cases, this event is cited from the underlying IANA registry. If the
update is triggered by an RFC, that RFC must also be included in
the "reference" substatement.

 -- If a name in the IANA registry does not comply with the
 -- YANG naming conventions, add details how IANA can generate
 -- legal identifiers. For example, if the name begins with
 -- a number, indicate a preference to spell out the number when
 -- used as an identifier.

IANA is requested to add this note to [reference-to-the-iana-foo-
registry]:

 When this registry is modified, the YANG module "iana-foo"
 [IANA_FOO_URL] must be updated as defined in RFC IIII.

<CODE ENDS>

5. IANA Considerations

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

Name:
Maintained by IANA?
Namespace:

5.1. YANG Modules
The following registration in the "ns" registry of the "IETF XML Registry" registry group

 was detailed in . IANA has updated this registration to reference this
document.

urn:ietf:params:xml:ns:yang:ietf-template
The IESG

N/A; the requested URI is an XML namespace.

IANA has registered the following URI in the "ns" registry within the "IETF XML Registry"
registry group :

urn:ietf:params:xml:ns:yang:iana-template
The IESG

N/A; the requested URI is an XML namespace.

IANA has registered the following YANG modules in the "YANG Module Names" registry
 within the "YANG Parameters" registry group.

ietf-template
N

urn:ietf:params:xml:ns:yang:ietf-template

[RFC3688] [RFC8407]

[RFC3688]

[RFC6020]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 71

Prefix:
Reference:

Name:
Maintained by IANA?
Namespace:
Prefix:
Reference:

temp
RFC 9907

iana-template
N

urn:ietf:params:xml:ns:yang:iana-template
iana-foo

RFC 9907

5.2. Update in YANG Parameters Registry Group
For the references of the "YANG Module Names" registry under the "YANG Parameters" registry
group, IANA has updated to this document, as it contains the template necessary for
registration in Appendix B.

[RFC8407]

5.3. IANA-Maintained Modules
IANA should refer to Section 4.30.3 for information necessary to populate "revision" statements
and "identity" and "enum" substatements in IANA-maintained modules. These considerations
cover both the creation and maintenance of an IANA-mainatined module. In particular, the
following should be noted:

When an underlying registration is deprecated or obsoleted, a corresponding "status"
substatement should be added to the identity or enumeration statement.
The "reference" substatement should point specifically to the published module (i.e.,
IANA_FOO_URL_With_REV). When the registration is triggered by an RFC, that RFC must also
be included in the "reference" substatement. It may also point to an authoritative event
triggering the update to the YANG module. In all cases, the event is cited from the
underlying IANA registry.

In addition, when the module is published, IANA must add the following notes to:

The YANG Module Names registry:
New values must not be directly added to the "iana-foo" YANG module. They must instead be
added to the "foo" registry.

The underlying registry:
When this registry is modified, the YANG module "iana-foo" [IANA_FOO_URL] must be
updated as defined in RFC IIII.

•

•

6. Operations and Manageability Considerations
Although the document focuses on YANG data modeling language guidance, the document does
not define a protocol or a protocol extension. As such, there are no new operations or
manageability requirements introduced by this document.

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 72

7. Security Considerations
This document defines guidelines for NETCONF or RESTCONF content defined with the YANG
data modeling language. It does not introduce any new or increased security risks.

8. References

[RFC2119]

[RFC3688]

[RFC3986]

[RFC5378]

[RFC6020]

[RFC6241]

[RFC7950]

[RFC7952]

[RFC8040]

[RFC8126]

[RFC8174]

8.1. Normative References

, , ,
, , March 1997,
.

, , , , ,
January 2004, .

, , and ,
, , , , January 2005,

.

 and ,
, , , , November 2008,

.

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, , ,
, August 2016, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier
(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Bradner, S., Ed. J. Contreras, Ed. "Rights Contributors Provide to the IETF
Trust" BCP 78 RFC 5378 DOI 10.17487/RFC5378 <https://
www.rfc-editor.org/info/rfc5378>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Lhotka, L. "Defining and Using Metadata with YANG" RFC 7952 DOI 10.17487/
RFC7952 <https://www.rfc-editor.org/info/rfc7952>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 73

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5378
https://www.rfc-editor.org/info/rfc5378
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8341]

[RFC8342]

[RFC8791]

[RFC8792]

[RFC8819]

[W3C.REC-xpath]

 and , ,
, , , March 2018,

.

, , , , and ,
, , ,

March 2018, .

, , and , ,
, , June 2020,
.

, , , and ,
, , , June

2020, .

, , and , , ,
, January 2021, .

 and , ,
, 16 November 1999,

.

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bierman, A. Björklund, M. K. Watsen "YANG Data Structure Extensions"
RFC 8791 DOI 10.17487/RFC8791 <https://www.rfc-editor.org/info/
rfc8791>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in
Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Hopps, C. Berger, L. D. Bogdanovic "YANG Module Tags" RFC 8819 DOI
10.17487/RFC8819 <https://www.rfc-editor.org/info/rfc8819>

Clark, J., Ed. S. DeRose, Ed. "XML Path Language (XPath) Version 1.0"
W3C Recommendation <https://www.w3.org/TR/1999/REC-
xpath-19991116>

[Err5693]

[Err5800]

[Err6899]

[Err7416]

[IANA-MOD-NAMES]

[IANA-TAGS]

[IANA-XML]

[IANA-YANG-PARAMETERS]

[IANA_BFD_URL]

8.2. Informative References

, , ,
.

, , ,
.

, , ,
.

, , ,
.

, ,
.

, ,
.

, , .

, ,
.

, ,
.

RFC Errata Erratum ID 5693 RFC 8407 <https://www.rfc-editor.org/errata/
eid5693>

RFC Errata Erratum ID 5800 RFC 8407 <https://www.rfc-editor.org/errata/
eid5800>

RFC Errata Erratum ID 6899 RFC 8407 <https://www.rfc-editor.org/errata/
eid6899>

RFC Errata Erratum ID 7416 RFC 8407 <https://www.rfc-editor.org/errata/
eid7416>

IANA "YANG Module Names" <https://www.iana.org/assignments/yang-
parameters/>

IANA "YANG Module Tags" <https://www.iana.org/assignments/yang-module-
tags/>

IANA "IETF XML Registry" <https://www.iana.org/assignments/xml-registry/>

IANA "YANG Parameters" <https://www.iana.org/assignments/
yang-parameters>

IANA "iana-bfd-types YANG Module" <https://www.iana.org/assignments/
iana-bfd-types>

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 74

https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8791
https://www.rfc-editor.org/info/rfc8791
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc8819
https://www.w3.org/TR/1999/REC-xpath-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116
https://www.rfc-editor.org/errata/eid5693
https://www.rfc-editor.org/errata/eid5693
https://www.rfc-editor.org/errata/eid5800
https://www.rfc-editor.org/errata/eid5800
https://www.rfc-editor.org/errata/eid6899
https://www.rfc-editor.org/errata/eid6899
https://www.rfc-editor.org/errata/eid7416
https://www.rfc-editor.org/errata/eid7416
https://www.iana.org/assignments/yang-parameters/
https://www.iana.org/assignments/yang-parameters/
https://www.iana.org/assignments/yang-module-tags/
https://www.iana.org/assignments/yang-module-tags/
https://www.iana.org/assignments/xml-registry/
https://www.iana.org/assignments/yang-parameters
https://www.iana.org/assignments/yang-parameters
https://www.iana.org/assignments/iana-bfd-types
https://www.iana.org/assignments/iana-bfd-types

[IANA_BGP-L2_URL]

[IANA_BGP-L2_URL-Revision]

[IANA_PW-Types_URL]

[IANA_Tunnel_Type_URL]

[ID-Guidelines]

[RFC2026]

[RFC2606]

[RFC2863]

[RFC3849]

[RFC4151]

[RFC4181]

[RFC4252]

[RFC4253]

[RFC5398]

[RFC5612]

, ,
.

, ,
.

, ,
.

, ,
.

, ,
.

, , , ,
, October 1996, .

 and , , ,
, , June 1999,

.

 and , , ,
, June 2000, .

, , and ,
, , , July 2004,

.

 and , , ,
, October 2005, .

, ,
, , , September 2005,

.

 and , ,
, , January 2006,
.

 and ,
, , , January 2006,

.

,
, , , December 2008,

.

 and , ,
, , August 2009,

.

IANA "iana-bgp-l2-encaps YANG Module" <https://www.iana.org/
assignments/iana-bgp-l2-encaps>

IANA "iana-bfd-types@2021-10-21.yang" <https://www.iana.org/
assignments/yang-parameters/iana-bfd-types@2021-10-21.yang>

IANA "iana-pseudowire-types YANG Module" <https://www.iana.org/
assignments/iana-pseudowire-types>

IANA "iana-tunnel-type YANG Module" <https://www.iana.org/
assignments/iana-tunnel-type>

IETF "Content guidelines overview" <https://authors.ietf.org/en/content-
guidelines-overview>

Bradner, S. "The Internet Standards Process -- Revision 3" BCP 9 RFC 2026 DOI
10.17487/RFC2026 <https://www.rfc-editor.org/info/rfc2026>

Eastlake 3rd, D. A. Panitz "Reserved Top Level DNS Names" BCP 32 RFC
2606 DOI 10.17487/RFC2606 <https://www.rfc-editor.org/info/
rfc2606>

McCloghrie, K. F. Kastenholz "The Interfaces Group MIB" RFC 2863 DOI
10.17487/RFC2863 <https://www.rfc-editor.org/info/rfc2863>

Huston, G. Lord, A. P. Smith "IPv6 Address Prefix Reserved for
Documentation" RFC 3849 DOI 10.17487/RFC3849 <https://www.rfc-
editor.org/info/rfc3849>

Kindberg, T. S. Hawke "The 'tag' URI Scheme" RFC 4151 DOI 10.17487/
RFC4151 <https://www.rfc-editor.org/info/rfc4151>

Heard, C., Ed. "Guidelines for Authors and Reviewers of MIB Documents" BCP
111 RFC 4181 DOI 10.17487/RFC4181 <https://www.rfc-
editor.org/info/rfc4181>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Transport Layer
Protocol" RFC 4253 DOI 10.17487/RFC4253 <https://www.rfc-
editor.org/info/rfc4253>

Huston, G. "Autonomous System (AS) Number Reservation for Documentation
Use" RFC 5398 DOI 10.17487/RFC5398 <https://www.rfc-
editor.org/info/rfc5398>

Eronen, P. D. Harrington "Enterprise Number for Documentation Use" RFC
5612 DOI 10.17487/RFC5612 <https://www.rfc-editor.org/info/
rfc5612>

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 75

https://www.iana.org/assignments/iana-bgp-l2-encaps
https://www.iana.org/assignments/iana-bgp-l2-encaps
https://www.iana.org/assignments/yang-parameters/iana-bfd-types@2021-10-21.yang
https://www.iana.org/assignments/yang-parameters/iana-bfd-types@2021-10-21.yang
https://www.iana.org/assignments/iana-pseudowire-types
https://www.iana.org/assignments/iana-pseudowire-types
https://www.iana.org/assignments/iana-tunnel-type
https://www.iana.org/assignments/iana-tunnel-type
https://authors.ietf.org/en/content-guidelines-overview
https://authors.ietf.org/en/content-guidelines-overview
https://www.rfc-editor.org/info/rfc2026
https://www.rfc-editor.org/info/rfc2606
https://www.rfc-editor.org/info/rfc2606
https://www.rfc-editor.org/info/rfc2863
https://www.rfc-editor.org/info/rfc3849
https://www.rfc-editor.org/info/rfc3849
https://www.rfc-editor.org/info/rfc4151
https://www.rfc-editor.org/info/rfc4181
https://www.rfc-editor.org/info/rfc4181
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc5398
https://www.rfc-editor.org/info/rfc5398
https://www.rfc-editor.org/info/rfc5612
https://www.rfc-editor.org/info/rfc5612

[RFC5737]

[RFC6991]

[RFC7223]

[RFC7224]

[RFC7407]

[RFC7951]

[RFC8199]

[RFC8299]

[RFC8309]

[RFC8340]

[RFC8343]

[RFC8349]

[RFC8407]

[RFC8446]

[RFC8466]

, , and ,
, , , January 2010,

.

, , ,
, July 2013, .

, , ,
, May 2014, .

, , ,
, May 2014, .

 and ,
, , , December 2014,

.

, , ,
, August 2016, .

, , and , ,
, , July 2017,

.

, , , and ,
, , , January 2018,

.

, , and , , ,
, January 2018, .

 and , , , ,
, March 2018, .

, , ,
, March 2018, .

, , and ,
, , , March 2018,

.

,
, , , , October 2018,

.

, , ,
, August 2018, .

, , , and ,
, ,

, October 2018, .

Arkko, J. Cotton, M. L. Vegoda "IPv4 Address Blocks Reserved for
Documentation" RFC 5737 DOI 10.17487/RFC5737 <https://
www.rfc-editor.org/info/rfc5737>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

Bjorklund, M. "A YANG Data Model for Interface Management" RFC 7223 DOI
10.17487/RFC7223 <https://www.rfc-editor.org/info/rfc7223>

Bjorklund, M. "IANA Interface Type YANG Module" RFC 7224 DOI 10.17487/
RFC7224 <https://www.rfc-editor.org/info/rfc7224>

Bjorklund, M. J. Schoenwaelder "A YANG Data Model for SNMP
Configuration" RFC 7407 DOI 10.17487/RFC7407 <https://
www.rfc-editor.org/info/rfc7407>

Lhotka, L. "JSON Encoding of Data Modeled with YANG" RFC 7951 DOI
10.17487/RFC7951 <https://www.rfc-editor.org/info/rfc7951>

Bogdanovic, D. Claise, B. C. Moberg "YANG Module Classification" RFC
8199 DOI 10.17487/RFC8199 <https://www.rfc-editor.org/info/
rfc8199>

Wu, Q., Ed. Litkowski, S. Tomotaki, L. K. Ogaki "YANG Data Model for
L3VPN Service Delivery" RFC 8299 DOI 10.17487/RFC8299
<https://www.rfc-editor.org/info/rfc8299>

Wu, Q. Liu, W. A. Farrel "Service Models Explained" RFC 8309 DOI
10.17487/RFC8309 <https://www.rfc-editor.org/info/rfc8309>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. "A YANG Data Model for Interface Management" RFC 8343 DOI
10.17487/RFC8343 <https://www.rfc-editor.org/info/rfc8343>

Lhotka, L. Lindem, A. Y. Qu "A YANG Data Model for Routing Management
(NMDA Version)" RFC 8349 DOI 10.17487/RFC8349 <https://
www.rfc-editor.org/info/rfc8349>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Wen, B. Fioccola, G., Ed. Xie, C. L. Jalil "A YANG Data Model for Layer 2
Virtual Private Network (L2VPN) Service Delivery" RFC 8466 DOI 10.17487/
RFC8466 <https://www.rfc-editor.org/info/rfc8466>

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 76

https://www.rfc-editor.org/info/rfc5737
https://www.rfc-editor.org/info/rfc5737
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7223
https://www.rfc-editor.org/info/rfc7224
https://www.rfc-editor.org/info/rfc7407
https://www.rfc-editor.org/info/rfc7407
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8199
https://www.rfc-editor.org/info/rfc8199
https://www.rfc-editor.org/info/rfc8299
https://www.rfc-editor.org/info/rfc8309
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8466

[RFC8519]

[RFC8675]

[RFC8892]

[RFC8969]

[RFC9000]

[RFC9108]

[RFC9129]

[RFC9132]

[RFC9182]

[RFC9195]

[RFC9244]

[RFC9291]

, , , and ,
, , , March

2019, .

, , and ,
, , , November 2019,

.

 and ,
, , , August

2020, .

, , , , and ,
, ,

, January 2021, .

 and ,
, , , May 2021,

.

 and ,
, , , September 2021,

.

, , , , and ,
, , , October 2022,

.

, , and ,
, ,

, September 2021, .

, , , , and
, , ,

, February 2022, .

 and , , ,
, February 2022, .

, , , , and ,
,

, , June 2022,
.

, , , and ,
, , ,

September 2022, .

Jethanandani, M. Agarwal, S. Huang, L. D. Blair "YANG Data Model for
Network Access Control Lists (ACLs)" RFC 8519 DOI 10.17487/RFC8519

<https://www.rfc-editor.org/info/rfc8519>

Boucadair, M. Farrer, I. R. Asati "A YANG Data Model for Tunnel Interface
Types" RFC 8675 DOI 10.17487/RFC8675 <https://www.rfc-
editor.org/info/rfc8675>

Thaler, D. D. Romascanu "Guidelines and Registration Procedures for
Interface Types and Tunnel Types" RFC 8892 DOI 10.17487/RFC8892

<https://www.rfc-editor.org/info/rfc8892>

Wu, Q., Ed. Boucadair, M., Ed. Lopez, D. Xie, C. L. Geng "A Framework for
Automating Service and Network Management with YANG" RFC 8969 DOI
10.17487/RFC8969 <https://www.rfc-editor.org/info/rfc8969>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Lhotka, L. P. Špaček "YANG Types for DNS Classes and Resource Record
Types" RFC 9108 DOI 10.17487/RFC9108 <https://www.rfc-
editor.org/info/rfc9108>

Yeung, D. Qu, Y. Zhang, Z. Chen, I. A. Lindem "YANG Data Model for the
OSPF Protocol" RFC 9129 DOI 10.17487/RFC9129 <https://
www.rfc-editor.org/info/rfc9129>

Boucadair, M., Ed. Shallow, J. T. Reddy.K "Distributed Denial-of-Service
Open Threat Signaling (DOTS) Signal Channel Specification" RFC 9132 DOI
10.17487/RFC9132 <https://www.rfc-editor.org/info/rfc9132>

Barguil, S. Gonzalez de Dios, O., Ed. Boucadair, M., Ed. Munoz, L. A.
Aguado "A YANG Network Data Model for Layer 3 VPNs" RFC 9182 DOI
10.17487/RFC9182 <https://www.rfc-editor.org/info/rfc9182>

Lengyel, B. B. Claise "A File Format for YANG Instance Data" RFC 9195 DOI
10.17487/RFC9195 <https://www.rfc-editor.org/info/rfc9195>

Boucadair, M., Ed. Reddy.K, T., Ed. Doron, E. Chen, M. J. Shallow
"Distributed Denial-of-Service Open Threat Signaling (DOTS) Telemetry" RFC
9244 DOI 10.17487/RFC9244 <https://www.rfc-editor.org/info/
rfc9244>

Boucadair, M., Ed. Gonzalez de Dios, O., Ed. Barguil, S. L. Munoz "A YANG
Network Data Model for Layer 2 VPNs" RFC 9291 DOI 10.17487/RFC9291

<https://www.rfc-editor.org/info/rfc9291>

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 77

https://www.rfc-editor.org/info/rfc8519
https://www.rfc-editor.org/info/rfc8675
https://www.rfc-editor.org/info/rfc8675
https://www.rfc-editor.org/info/rfc8892
https://www.rfc-editor.org/info/rfc8969
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9108
https://www.rfc-editor.org/info/rfc9108
https://www.rfc-editor.org/info/rfc9129
https://www.rfc-editor.org/info/rfc9129
https://www.rfc-editor.org/info/rfc9132
https://www.rfc-editor.org/info/rfc9182
https://www.rfc-editor.org/info/rfc9195
https://www.rfc-editor.org/info/rfc9244
https://www.rfc-editor.org/info/rfc9244
https://www.rfc-editor.org/info/rfc9291

[RFC9362]

[RFC9637]

[RFC9645]

[Style]

 and ,

, , , February 2023,
.

 and , ,
, , August 2024,

.

, , ,
, October 2024, .

, , December 2021,
.

Boucadair, M. J. Shallow "Distributed Denial-of-Service Open Threat
Signaling (DOTS) Signal Channel Configuration Attributes for Robust Block
Transmission" RFC 9362 DOI 10.17487/RFC9362 <https://
www.rfc-editor.org/info/rfc9362>

Huston, G. N. Buraglio "Expanding the IPv6 Documentation Space" RFC
9637 DOI 10.17487/RFC9637 <https://www.rfc-editor.org/info/
rfc9637>

Watsen, K. "YANG Groupings for TLS Clients and TLS Servers" RFC 9645 DOI
10.17487/RFC9645 <https://www.rfc-editor.org/info/rfc9645>

"IANA YANG" commit 3a6cb69 <https://github.com/llhotka/
iana-yang>

Appendix A. Module Review Checklist
This section is adapted from .

The purpose of a YANG module review is to review the YANG module for both technical
correctness and adherence to IETF documentation requirements. The following checklist may be
helpful when reviewing an I-D:

I-D Boilerplate: Verify that the document contains the required I-D boilerplate (see
), including the appropriate statement to permit

publication as an RFC, and that the I-D boilerplate does not contain references or section
numbers.
Abstract: Verify that the abstract does not contain references, that it does not have a section
number, and that its content follows the guidelines in

.
Copyright Notice: Verify that the document has the appropriate text regarding the rights that
document contributors provide to the IETF Trust . Verify that it contains the full
IETF Trust copyright notice at the beginning of the document. The IETF Trust Legal
Provisions (TLP) can be found at:
Security Considerations section: If none of the modules in the document falls under the
exceptions in Section 3.7 (e.g., use YANG data structure), verify that the section is modeled
after the latest approved template from the Operations and Management (OPS) area website
(see) and that the guidelines
therein have been followed.
IANA Considerations section: This section must always be present. For each module within
the document, ensure that the IANA Considerations section contains entries for the
following IANA registries:

XML Namespace Registry: Register the YANG module namespace.
YANG Module Registry: Register the YANG module name, prefix, namespace, and RFC
number according to the rules specified in .

[RFC4181]

• <https://
www.ietf.org/id-info/guidelines.html>

•
<https://www.ietf.org/id-info/

guidelines.html>
•

[RFC5378]

<https://trustee.ietf.org/license-info/>
•

<https://wiki.ietf.org/group/ops/yang-security-guidelines>

•

◦
◦

[RFC6020]

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 78

https://www.rfc-editor.org/info/rfc9362
https://www.rfc-editor.org/info/rfc9362
https://www.rfc-editor.org/info/rfc9637
https://www.rfc-editor.org/info/rfc9637
https://www.rfc-editor.org/info/rfc9645
https://github.com/llhotka/iana-yang
https://github.com/llhotka/iana-yang
https://www.ietf.org/id-info/guidelines.html
https://www.ietf.org/id-info/guidelines.html
https://www.ietf.org/id-info/guidelines.html
https://www.ietf.org/id-info/guidelines.html
https://trustee.ietf.org/license-info/
https://wiki.ietf.org/group/ops/yang-security-guidelines

References: Verify that the references are properly divided between normative and
informative references, that RFCs 2119 and 8174 are included as normative references if the
terminology defined therein is used in the document, that all references required by the
boilerplate are present, that all YANG modules containing imported items are cited as
normative references, and that all citations point to the most current RFCs, unless there is a
valid reason to do otherwise (for example, it is okay to include an informative reference to a
previous version of a specification to help explain a feature included for backward
compatibility). Be sure citations for all imported modules are present somewhere in the
document text (outside the YANG module). If a YANG module contains "reference" or
"description" statements that refer to an I-D, then the I-D is included as an informative
reference.
License: Verify that the document contains the Revised BSD License in each YANG module or
submodule. Some guidelines related to this requirement are described in Section 3.1. Make
sure that the correct year is used in all copyright dates. Use the approved text from the latest
TLP document, which can be found at:
Other Issues: Check for any issues mentioned in
that are not covered elsewhere.
Technical Content: Review the actual technical content for compliance with the guidelines in
this document. The use of a YANG module compiler is recommended when checking for
syntax errors. A list of freely available tools and other information, including formatting
advice, can be found at: and

Checking for correct syntax, however, is only part of the job. It is just as important to
actually read the YANG module document from the point of view of a potential
implementor. It is particularly important to check that "description" statements are
sufficiently clear and unambiguous to allow interoperable implementations to be created.

•

•

<https://trustee.ietf.org/license-info/>
• <https://www.ietf.org/id-info/checklist.html>

•

<https://wiki.ietf.org/group/netconf> <https://wiki.ietf.org/group/
netmod>

Appendix B. Template for IETF Modules

<CODE BEGINS> file "ietf-template@2023-07-26.yang"

module ietf-template {
 yang-version 1.1;

 // replace this string with a unique namespace URN value

 namespace "urn:ietf:params:xml:ns:yang:ietf-template";

 // replace this string, and try to pick a unique prefix

 prefix temp;

 // import statements here: e.g.,
 // import ietf-yang-types { prefix yang; }
 // import ietf-inet-types { prefix inet; }
 // identify the IETF working group if applicable

 organization

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 79

https://trustee.ietf.org/license-info/
https://www.ietf.org/id-info/checklist.html
https://wiki.ietf.org/group/netconf
https://wiki.ietf.org/group/netmod
https://wiki.ietf.org/group/netmod

 "IETF your-wg-name (Expanded WG Name) Working Group";

 // update this contact statement with your info

 contact
 "WG Web: <http://datatracker.ietf.org/wg/your-wg-name/>
 WG List: <mailto:your-wg-name@ietf.org>

 Editor: your-name
 <mailto:your-email@example.com>";

 // replace the first sentence in this description statement.
 // replace the copyright notice with the most recent
 // version, if it has been updated since the publication
 // of this document.

 description
 "This module defines a template for other YANG modules.

 Copyright (c) <insert year> IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 All revisions of IETF and IANA published modules can be found
 at the YANG Parameters registry group
 (https://www.iana.org/assignments/yang-parameters).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove
 // this note

 // replace 'date-revision' with the module publication date
 // the format is (YYYY-MM-DD)

 revision date-revision {
 description
 "What changed in this revision.";
 reference
 "RFC XXXX: <Replace With Document Title>";
 }

 // RFC Ed.: Update with the RFC number and title
 // of the RFC that defined the initial version of
 // the module and remove this note

 revision date-initial {
 description
 "Initial version.";
 reference
 "RFC XXXX: <Replace With Document Title>";

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 80

 }

 // extension statements
 // feature statements
 // identity statements
 // typedef statements
 // grouping statements
 // data definition statements
 // augment statements
 // rpc statements
 // notification statements
 // DO NOT put deviation statements in a published module
}
<CODE ENDS>

Appendix C. Template for IANA-Maintained Modules

<CODE BEGINS> file "iana-template@2023-12-08.yang"

module iana-template {
 yang-version 1.1;

 // replace this string with a unique namespace URN value

 namespace "urn:ietf:params:xml:ns:yang:iana-template";

 // replace with the assigned prefix

 prefix iana-foo;

 organization
 "Internet Assigned Numbers Authority (IANA)";

 contact
 "Internet Assigned Numbers Authority

 ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094

 Tel: +1 424 254 5300

 <mailto:iana@iana.org>";

 description
 "This module defines a template for IANA-maintained modules.

 Copyright (c) <insert year> IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 81

 (https://trustee.ietf.org/license-info).

 All revisions of IETF and IANA published modules can be found
 at the YANG Parameters registry group
 (https://www.iana.org/assignments/yang-parameters).

 The initial version of this YANG module is part of RFC IIII;
 see the RFC itself for full legal notices.

 // RFC Ed.: replace IIII with actual RFC number and remove
 // this note

 // If a script is used, complete with the script information

 This version of this YANG module was generated from the
 corresponding IANA registry using a <script-info>.

 // RFC Ed.: replace the IANA_FOO_URL and remove this note

 The latest version of this YANG module is available at
 <IANA_FOO_URL>.";

 // replace with the registry name and the URL of the IANA registry

 reference
 "Registry Name (URL)";

 // replace 'date-revision' with the module publication date
 // the format is (YYYY-MM-DD)

 revision date-revision {
 description
 "Indicates the list of changes per Section 4.30.3 of RFC 9907";
 reference
 "URL of the latest version of the module
 (if any) list the authoritative event (e.g., RFC) that
 triggered the update to the YANG module";
 }

 // replace 'date-initial' with the module publication date
 // the format is (YYYY-MM-DD)

 revision date-initial {
 description
 "Initial version.";
 reference
 "URL of the published initial version of the module
 RFC IIII: RFC Title";

 // RFC Ed.: Update with the RFC number and title
 // of the RFC that defined the initial version of
 // the module and remove this note
 }

 // identity statements
 // typedef statements

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 82

}
<CODE ENDS>

Acknowledgments
Thanks to and for the discussion and valuable comments.
Special thanks to for sharing more context that led to the design documented in

.

Thanks to , , , , , ,
, , , , , ,

and for the comments.

 suggested to include more details about IANA considerations.

Section 4.28 is inspired by .

 reported an inconsistency in Sections 4.6.2 and 4.6.4 of .

Thanks to for reviewing the document, including providing YANGDOCTORS reviews.

 provided the examples of "case + when" construct.

Thanks to and for the SAAG review.

 contributed text to the security and IANA-maintained module templates.

Special thanks to for the thoughtful and careful review of the document.

Thanks to for the careful shepherd review.

Thanks to for triggering the discussion on data model versus module.

Thanks to for the thoughtful AD review.

Thanks to for the genart review, for the check on RPC
implications, for the dnsdir, for the opsdir review,
for the tsvart review, and for the secdir review.

Thanks , , , , , , and
 for the IESG review.

The author of RFC 8407:

Acknowledgments from RFC 8407:

Jürgen Schönwälder Ladislav Lhotka
Ladislav Lhotka

[RFC9108]

Italo Busi Benoît Claise Tom Petch Randy Presuhn Martin Björklund Acee Lindem
Dale R. Worley Kent Watsen Jan Lindblad Qiufang Ma Mahesh Jethanandani Robert Wilton

Thomas Fossati

Lou Berger

[RFC8819]

Michal Vaško [RFC8407]

Xufeng Liu

Italo Busi

Rich Salz Michael Richardson

Kent Watsen

Amanda Baber

Qiufang Ma

Acee Lindem

Mahesh Jethanandani

Christer Holmberg Jean Mahoney
Ralf Weber Giuseppe Fioccola Joseph Touch

Yoav Nir

Éric Vyncke Mike Bishop Roman Danyliw Orie Steele Ketan Talaulikar Deb Cooley
Gorry Fairhurst

Andy Bierman
YumaWorks

andy@yumaworks.comEmail:

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 83

https://www.rfc-editor.org/rfc/rfc8407#section-4.6.2
https://www.rfc-editor.org/rfc/rfc8407#section-4.6.4
mailto:andy@yumaworks.com

The structure and contents of this document are adapted from "Guidelines for Authors
and Reviewers of MIB Documents" , by .

The working group thanks , , ,
, , , , and for their

extensive reviews and contributions to this document.

[RFC4181] C. M. Heard

Martin Bjorklund Juergen Schoenwaelder Ladislav Lhotka
Jernej Tuljak Lou Berger Robert Wilton Kent Watsen William Lupton

Authors' Addresses
Andy Bierman
YumaWorks
United States of America

andy@yumaworks.comEmail:

Mohamed Boucadair ()editor
Orange
France

mohamed.boucadair@orange.comEmail:

Qin Wu
Huawei
China

bill.wu@huawei.comEmail:

RFC 9907 Guidelines for YANG Documents January 2026

Bierman, et al. Best Current Practice Page 84

mailto:andy@yumaworks.com
mailto:mohamed.boucadair@orange.com
mailto:bill.wu@huawei.com

	RFC 9907
	Guidelines for Authors and Reviewers of Documents Containing YANG Data Models
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Changes Since RFC 8407

	2. Terminology and Notation Conventions
	2.1. NETCONF Terms
	2.2. YANG Terms
	2.3. Network Management Datastore Architecture (NMDA) Terms
	2.4. Requirements Notation
	2.5. YANG Data Model versus YANG Module

	3. General Documentation Guidelines
	3.1. Module Copyright
	3.2. Code Components
	3.2.1. Example Modules

	3.3. Terminology Section
	3.4. Tree Diagrams
	3.5. Narrative Sections
	3.5.1. YANG Module Classification

	3.6. Definitions Section
	3.7. Security Considerations Section
	3.7.1. Security Considerations Section Template

	3.8. IANA Considerations Section
	3.8.1. Documents That Create a New Namespace
	3.8.2. Documents That Extend an Existing Namespace
	3.8.3. Registration Templates
	3.8.3.1. IANA Template for Documents Defining New YANG Modules
	3.8.3.2. IANA Template for Revising YANG Modules

	3.9. References Sections
	3.10. Validation Tools
	3.11. Module Extraction Tools
	3.12. Module Usage Examples

	4. YANG Usage Guidelines
	4.1. Module Naming Conventions
	4.2. Prefixes
	4.3. Identifiers
	4.3.1. Identifier Naming Conventions

	4.4. Defaults
	4.5. Conditional Statements
	4.6. XPath Usage
	4.6.1. XPath Evaluation Contexts
	4.6.2. Function Library
	4.6.3. Axes
	4.6.4. Types
	4.6.5. Wildcards
	4.6.6. Boolean Expressions

	4.7. YANG Definition Lifecycle Management
	4.8. Module Header, Meta, and Revision Statements
	4.9. Namespace Assignments
	4.10. Top-Level Data Definitions
	4.11. Data Types
	4.11.1. Fixed-Value Extensibility
	4.11.2. Patterns and Ranges
	4.11.3. Enumerations and Bits
	4.11.4. Union Types
	4.11.5. Empty and Boolean

	4.12. Reusable Type Definitions
	4.13. Reusable Groupings
	4.14. Data Definitions
	4.14.1. Non-Presence Containers
	4.14.2. Top-Level Data Nodes

	4.15. Operation Definitions
	4.16. Notification Definitions
	4.17. Feature Definitions
	4.18. YANG Data Node Constraints
	4.18.1. Controlling Quantity
	4.18.2. "must" versus "when"

	4.19. "augment" Statements
	4.19.1. Conditional Augment Statements
	4.19.2. Conditionally Mandatory Data Definition Statements

	4.20. Deviation Statements
	4.21. Extension Statements
	4.22. Data Correlation
	4.22.1. Use of "leafref" for Key Correlation

	4.23. Operational State
	4.23.1. Combining Operational State and Configuration Data
	4.23.2. Representing Operational Values of Configuration Data
	4.23.3. NMDA Transition Guidelines
	4.23.3.1. Temporary Non-NMDA Modules
	4.23.3.2. Example: Create a New NMDA Module
	4.23.3.3. Example: Convert an Old Non-NMDA Module
	4.23.3.4. Example: Create a Temporary NMDA Module

	4.24. Performance Considerations
	4.25. Open Systems Considerations
	4.26. Guidelines for Constructs Specific to YANG 1.1
	4.26.1. Importing Multiple Revisions
	4.26.2. Using Feature Logic
	4.26.3. "anyxml" versus "anydata"
	4.26.4. "action" versus "rpc"

	4.27. Updating YANG Modules (Published versus Unpublished)
	4.28. Defining Standard Tags
	4.29. Modeling Abstract Data Structures
	4.30. IANA-Maintained Modules
	4.30.1. Context
	4.30.2. Guidelines for IANA-Maintained Modules
	4.30.3. Guidance for Writing the IANA Considerations for RFCs Defining IANA-Maintained Modules
	4.30.3.1. Template for IANA-Maintained Modules with Identities
	4.30.3.2. Template for IANA-Maintained Modules with Enumerations

	5. IANA Considerations
	5.1. YANG Modules
	5.2. Update in YANG Parameters Registry Group
	5.3. IANA-Maintained Modules

	6. Operations and Manageability Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Module Review Checklist
	Appendix B. Template for IETF Modules
	Appendix C. Template for IANA-Maintained Modules
	Acknowledgments
	Authors' Addresses

