Internet Engineering Task Force (IETF) P. Saint-Andre

Request for Comments: 8264 Jabber.org
Obsoletes: 7564 M. Blanchet
Category: Standards Track Viagenie
ISSN: 2070-1721 October 2017

PRECIS Framework: Preparation, Enforcement, and Comparison of
Internationalized Strings in Application Protocols

Abstract

Application protocols using Unicode code points in protocol strings
need to properly handle such strings in order to enforce
internationalization rules for strings placed in various protocol
slots (such as addresses and identifiers) and to perform valid
comparison operations (e.g., for purposes of authentication or
authorization). This document defines a framework enabling
application protocols to perform the preparation, enforcement, and
comparison of internationalized strings ("PRECIS") in a way that
depends on the properties of Unicode code points and thus is more
agile with respect to versions of Unicode. As a result, this
framework provides a more sustainable approach to the handling of
internationalized strings than the previous framework, known as
Stringprep (RFC 3454). This document obsoletes RFC 7564.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc—editor.org/info/rfc8264.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of

Saint-Andre & Blanchet Standards Track [Page 1]

https://trustee.ietf.org/license-info
https://www.rfc-editor.org/info/rfc8264
http:Jabber.org

RFC 8264 PRECIS Framework October 2017

publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction
Terminology .
Preparation, Enforcement, and Comparlson
String Classes e
4.1. Overview .
IdentlflerCIass .
.1. Valid . .
2. Contextual Rule Requ1red
3 Disallowed -
4. Unassigned
5 Examples
FreeformClass .
1
2
3
4

P WN -

2
4
4
4
4
4
3
4 Valid . . .
4 Contextual Rule Requ1red
4 Disallowed s
4 Unassigned
4.3.5. Examples
4.4. Summary .
P
1
2
5
5
5
5
5
3.
A
1.
2.

wWwwww NNNNN

3

6

6

8

8

9

9

10

10

10

11

11

11

12

12

12

12

12
rofiles . . . 14
Profiles Must Not Be Multlplled beyond Nece551ty 14
Rules B)
Width Mapplng Rule e 1)
Additional Mapping Rule . . -1
Case Mapping Rule . 16
Normalization Rule . 16
Directionality Rule . 17
A Note about Spaces . 18
pplications . . . 18
How to Use PRECIS 1n Appllcatlons . 18
Further Excluded Characters 20

.3. Building Application-Layer Constructs . 20
Order of Operations . o e e e e s 21
Code Point Properties . . 21
Category Definitions Used to Calculate Der1ved Property . 24
LetterDigits (A) e e s 25
Unstable (B) e e 25
IgnorableProperties (C) 25
IgnorableBlocks (D) 25
LDH (E) 25

[e)Ne)Ne)] (O]
NNNNN
UrWNE

O 00~

(e J{ej(e JUc}e]
UbrWNE

Saint-Andre & Blanchet Standards Track [Page 2]

RFC 8264 PRECIS Framework October 2017

9.6. Exceptions (F) C s s e s e ww w25
9.7. BackwardCompatlble (G) G r s e e s e e w e e e a w25
9.8. JoinControl (H) . .« + & + & & &« & « & + & = & = =« = « « « 26
9.9. OldHangulJamo (I) + + & & &+ & & &+ & & &+ & = s = =+ « « « 26
9.10. Unassigned (J) . & v & + & & &« & « & + & + 4 &« =« « . 26
9.11. ASCII7 (K) v & « & v & « & & % & = & s & = & = « = =« = « 26
9.12. Controls (L) . . e e e e e e e e e e e e e 27
9.13. Prec1sIgnorab1ePropertles M) & v v v e e e e e e e e e 27
9.14. Spaces (N) + v v v 4 v 4 v v 0 s 0 0 v e e e 27
9.15. Symbols (0) + & v + & 4 v & 4 v & v e e e e e e e e e 27
9.16. Punctuation (P) . . & « & v & v 4 4 4 4w w ww e e ow . 27
9.17. HasCompat (Q) . . C e h e a e e e x o w e w e e .o« 28
9.18. OtherLetterDigits (R) e e e h e w e e e a awwow . 28
10. Guidelines for Designated Experts s s s s s w x s s owoa . 28
11. IANA Considerations . . r e e e e ow o ow o 29
11.1. PRECIS Derived Property Value Reglstry e e e e e ow w29
11.2. PRECIS Base Classes Registry . . . v e e e e e oo 29
11.3. PRECIS Profiles Registry « « « « « « « . 30
12. Security Considerations . . . « &« + &« + &« + & + & = & = =« &« « 32
12.1. General Issues . . .
12.2. Use of the IdentlflerCIass e
12.3. Use of the FreeformClass « « « « « « « « « « « 33
12.4. Local Character Set Issues . + + « & « &+ & & s =« = &« » « 33
12.5. Visually Similar Characters « « « « « « « 33
12.6. Security of Passwords « « « & &« « & « « « « 35
13. Interoperability Considerations . . . + « + « « &« « « =« « « . 36
13.1. Coded Character Sets . . . « v + =« &« &« + &« & &+ =« =« &« » . 36
13.2. Dependency on Unicode . . + « + & & & & &« « + & « &« « « 37
13.3. Encoding . . . e v
13.4. Unicode Ver51ons . .« . 37
13.5. Potential Changes to Handllng of Certaln Un1code Code
Points + & &« v v &« v v 4 i v v e h e e e e e e e oa .o 37
14, References . . s s e s w s ow s ow o= ow o= ow o= ox o« . 38
14.1. Normative References 1
14.2. Informative References + « « + + &« &« + = « &« » « 39
Appendix A. Changes from RFC 7564« + &« + &« + & « &« « « 43
Acknowledgements ‘. X
Authors' Addresses .« « & & & & & & % s s 5 5 s 2 2 2 2 2 = =« 43

1. Introduction

Application protocols using Unicode code points [Unicode] in protocol
strings need to properly handle such strings in order to enforce
internationalization rules for strings placed in various protocol
slots (such as addresses and identifiers) and to perform valid
comparison operations (e.g., for purposes of authentication or
authorization). This document defines a framework enabling
application protocols to perform the preparation, enforcement, and

Saint-Andre & Blanchet Standards Track [Page 3]

RFC 8264 PRECIS Framework October 2017

comparison of internationalized strings ("PRECIS") in a way that
depends on the properties of Unicode code points and thus is more
agile with respect to versions of Unicode. (Note: PRECIS is
restricted to Unicode and does not support any other coded character
set [RF(C6365].)

As described in the PRECIS problem statement [RFC6885], many IETF
protocols have used the Stringprep framework [RFC3454] as the basis
for preparing, enforcing, and comparing protocol strings that contain
Unicode code points, especially code points outside the ASCII range
[RFC20]. The Stringprep framework was developed during work on the
original technology for internationalized domain names (IDNs), here
called "IDNA2003" [RFC3490], and Nameprep [RFC3491] was the
Stringprep profile for IDNs. At the time, Stringprep was designed as
a general framework so that other application protocols could define
their own Stringprep profiles. Indeed, a number of application
protocols defined such profiles.

After the publication of [RFC3454] in 2002, several significant
issues arose with the use of Stringprep in the IDN case, as
documented in the IAB's recommendations regarding IDNs [RFC4690]
(most significantly, Stringprep was tied to Unicode version 3.2).
Therefore, the newer IDNA specifications, here called "IDNA2008"
[RFC5890] [RFC5891] [RFC5892] [RFC5893] [RFC5894], no longer use
Stringprep and Nameprep. This migration away from Stringprep for
IDNs prompted other "customers'" of Stringprep to consider new
approaches to the preparation, enforcement, and comparison of
internationalized strings, as described in [RFC6885].

This document defines a framework for a post-Stringprep approach to
the preparation, enforcement, and comparison of internationalized
strings in application protocols, based on several principles:

1. Define a small set of string classes that specify the Unicode
code points appropriate for common application-protocol
constructs (where possible, maintaining compatibility with
IDNA2008 to help ensure a more consistent user experience).

2. Define each PRECIS string class in terms of Unicode code points
and their properties so that an algorithm can be used to
determine whether each code point or character category is
(a) valid, (b) allowed in certain contexts, (c) disallowed, or
(d) unassigned.

3. Use an "inclusion model" such that a string class consists only

of code points that are explicitly allowed, with the result that
any code point not explicitly allowed is forbidden.

Saint-Andre & Blanchet Standards Track [Page 4]

RFC 8264 PRECIS Framework October 2017

4. Enable application protocols to define profiles of the PRECIS
string classes if necessary (addressing matters such as width
mapping, case mapping, Unicode normalization, and
directionality), but strongly discourage the multiplication of
profiles beyond necessity in order to avoid violations of the
"Principle of Least Astonishment".

It is expected that this framework will yield the following benefits:

0o Application protocols will be more agile with regard to Unicode
versions (recognizing that complete agility cannot be realized in
practice).

o Implementers will be able to share code point tables and software
code across application protocols, most likely by means of
software libraries.

0o End users will be able to acquire more accurate expectations about
the code points that are acceptable in various contexts. Given
this more uniform set of string classes, it is also expected that
copy/paste operations between software implementing different
application protocols will be more predictable and coherent.

Whereas the string classes define the "baseline" code points for a
range of applications, profiling enables application protocols to
apply the string classes in ways that are appropriate for common
constructs such as usernames [RFC8265], opaque strings such as
passwords [RFC8265]1, and nicknames [RFC8266]. Profiles are
responsible for defining the handling of right-to-left code points as
well as various mapping operations of the kind also discussed for
IDNs in [RFC5895], such as case preservation or lowercasing, Unicode
normalization, mapping of certain code points to other code points or
to nothing, and mapping of fullwidth and halfwidth code points.

When an application applies a profile of a PRECIS string class, it
transforms an input string (which might or might not be conforming)
into an output string that definitively conforms to the profile. 1In
particular, this document focuses on the resulting ability to achieve
the following objectives:

a. Enforcing all the rules of a profile for a single output string
to check whether the output string conforms to the rules of the
profile and thus determine if a string can be included in a
protocol slot, communicated to another entity within a protocol,
stored in a retrieval system, etc.

b. Comparing two output strings to determine if they are equivalent,
typically through octet-for-octet matching to test for

Saint-Andre & Blanchet Standards Track [Page 5]

RFC 8264 PRECIS Framework October 2017

"bit-string identity" (e.g., to make an access decision for
purposes of authentication or authorization as further described
in [RFC6943]).

The opportunity to define profiles naturally introduces the
possibility of a proliferation of profiles, thus potentially
mitigating the benefits of common code and violating user
expectations. See Section 5 for a discussion of this important
topic.

In addition, it is extremely important for protocol designers and
application developers to understand that the transformation of an
input string to an output string is rarely reversible. As one
relatively simple example, case mapping would transform an input
string of "StPeter" to an output string of "stpeter", thus leading to
a loss of information about the capitalization of the first and third
characters. Similar considerations apply to other forms of mapping
and normalization.

Although this framework is similar to IDNA2008 and includes by
reference some of the character categories defined in [RFC5892], it
defines additional character categories to meet the needs of common
application protocols other than DNS.

The character categories and calculation rules defined under

Sections 8 and 9 are normative and apply to all Unicode code points.
The code point table that results from applying the character
categories and calculation rules to the latest version of Unicode can
be found in an IANA registry (see Section 11).

2. Terminology

Many important terms used in this document are defined in [RFC58901],
[RFC6365], [RFC6885], and [Unicodel. The terms "left-to-right" (LTR)
and "right-to-left" (RTL) are defined in Unicode Standard Annex #9
[UAX9].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
""SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Preparation, Enforcement, and Comparison

This document distinguishes between three different actions that an
entity can take with regard to a string:

Saint-Andre & Blanchet Standards Track [Page 6]

RFC 8264 PRECIS Framework October 2017

o Enforcement entails applying all of the rules specified for a
particular string class, or profile thereof, to a single input
string, for the purpose of checking whether the string conforms to
all of the rules and thus determining if the string can be used in
a given protocol slot.

o Comparison entails applying all of the rules specified for a
particular string class, or profile thereof, to two separate input
strings, for the purpose of determining if the two strings are
equivalent.

0 Preparation primarily entails ensuring that the code points in a
single input string are allowed by the underlying PRECIS string
class, and sometimes also entails applying one or more of the
rules specified for a particular string class or profile thereof.
Preparation can be appropriate for constrained devices that can to
some extent restrict the code points in a string to a limited
repertoire of characters but that do not have the processing power
or onboard memory to perform operations such as Unicode
normalization. However, preparation does not ensure that an input
string conforms to all of the rules for a string class or profile
thereof.

Note: The term "preparation" as used in this specification and
related documents has a much more limited scope than it did in
Stringprep; it essentially refers to a kind of preprocessing of
an input string, not the actual operations that apply
internationalization rules to produce an output string (here
termed "enforcement") or to compare two output strings (here
termed "comparison").

In most cases, authoritative entities such as servers are responsible
for enforcement, whereas subsidiary entities such as clients are
responsible only for preparation. The rationale for this distinction
is that clients might not have the facilities (in terms of device
memory and processing power) to enforce all the rules regarding
internationalized strings (such as width mapping and Unicode
normalization), although they can more easily limit the repertoire of
characters they offer to an end user. By contrast, it is assumed
that a server would have more capacity to enforce the rules, and in
any case a server acts as an authority regarding allowable strings in
protocol slots such as addresses and endpoint identifiers. 1In
addition, a client cannot necessarily be trusted to properly generate
such strings, especially for security-sensitive contexts such as
authentication and authorization.

Saint-Andre & Blanchet Standards Track [Page 7]

RFC 8264 PRECIS Framework October 2017

4. String Classes
4.1. Overview

Starting in 2010, various '"customers'" of Stringprep began to discuss
the need to define a post-Stringprep approach to the preparation and
comparison of internationalized strings other than IDNs. This
community analyzed the existing Stringprep profiles and also weighed
the costs and benefits of defining a relatively small set of Unicode
code points that would minimize the potential for user confusion
caused by visually similar code points (and thus be relatively
"safe") vs. defining a much larger set of Unicode code points that
would maximize the potential for user creativity (and thus be
relatively "expressive"). As a result, the community concluded that
most existing uses could be addressed by two string classes:

IdentifierClass: a sequence of letters, numbers, and some symbols
that is used to identify or address a network entity such as a
user account, a venue (e.g., a chat room), an information source
(e.g., a data feed), or a collection of data (e.g., a file); the
intent is that this class will minimize user confusion in a wide
variety of application protocols, with the result that safety has
been prioritized over expressiveness for this class.

FreeformClass: a sequence of letters, numbers, symbols, spaces, and
other code points that is used for free-form strings, including
passwords as well as display elements such as human-friendly
nicknames for devices or for participants in a chat room; the
intent is that this class will allow nearly any Unicode code
point, with the result that expressiveness has been prioritized
over safety for this class. Note well that protocol designers,
application developers, service providers, and end users might not
understand or be able to enter all of the code points that can be
included in the FreeformClass (see Section 12.3 for details).

Future specifications might define additional PRECIS string classes,
such as a class that falls somewhere between the IdentifierClass and
the FreeformClass. At this time, it is not clear how useful such a
class would be. 1In any case, because application developers are able
to define profiles of PRECIS string classes, a protocol needing a
construct between the IdentifierClass and the FreeformClass could
define a restricted profile of the FreeformClass if needed.

The following subsections discuss the IdentifierClass and
FreeformClass in more detail, with reference to the dimensions
described in Section 5 of [RFC6885]. Each string class is defined by
the following behavioral rules:

Saint-Andre & Blanchet Standards Track [Page 8]

RFC 8264 PRECIS Framework October 2017

Valid: Defines which code points are treated as valid for the
string.

Contextual Rule Required: Defines which code points are treated as
allowed only if the requirements of a contextual rule are met
(i.e., either CONTEXTJ or CONTEXTO as originally defined in the
IDNA2008 specifications).

Disallowed: Defines which code points need to be excluded from the
string.

Unassigned: Defines application behavior in the presence of code
points that are unknown (i.e., not yet designated) for the version
of Unicode used by the application.

This document defines the valid, contextual rule required,
disallowed, and unassigned rules for the IdentifierClass and
FreeformClass. As described under Section 5, profiles of these
string classes are responsible for defining the width mapping,
additional mapping, case mapping, normalization, and directionality
rules.

4.2. IdentifierClass

Most application technologies need strings that can be used to refer
to, include, or communicate protocol strings like usernames,
filenames, data feed identifiers, and chat room names. We group such
strings into a class called "IdentifierClass" having the following
features.

4.2.1. Valid

0o Code points traditionally used as letters and numbers in writing
systems, i.e., the LetterDigits ("A") category first defined in
[RFC5892] and listed here under Section 9.1.

o Code points in the range U+0021 through U+@07E, i.e., the
(printable) ASCII7 ("K") category defined under Section 9.11.
These code points are '"grandfathered" into PRECIS and thus are
valid even if they would otherwise be disallowed according to the
property-based rules specified in the next section.

Note: Although the PRECIS IdentifierClass reuses the LetterDigits
category from IDNA2008, the range of code points allowed in the
IdentifierClass is wider than the range of code points allowed in
IDNA2008. The main reason is that IDNA2008 applies the

Unstable ("B") category (Section 9.2) before the LetterDigits

Saint-Andre & Blanchet Standards Track [Page 9]

RFC 8264 PRECIS Framework October 2017

4.2.2.

4.2.3.

4.2.4.

category, thus disallowing uppercase code points, whereas the
IdentifierClass does not apply the Unstable category.

Contextual Rule Required

A number of code points from the Exceptions ("F") category defined
under Section 9.6.

Joining code points, i.e., the JoinControl ("H") category defined
under Section 9.8.

Disallowed

0ld Hangul Jamo code points, i.e., the OldHangulJamo ("I")
category defined under Section 9.9.

Control code points, i.e., the Controls ("L") category defined
under Section 9.12.

Ignorable code points, i.e., the PrecisIgnorableProperties ("M")
category defined under Section 9.13.

Space code points, i.e., the Spaces ("N") category defined under
Section 9.14.

Symbol code points, i.e., the Symbols ("0") category defined under
Section 9.15.

Punctuation code points, i.e., the Punctuation ("P") category
defined under Section 9.16.

Any code point that is decomposed and recomposed into something
other than itself under Unicode Normalization Form KC, i.e., the
HasCompat ("Q") category defined under Section 9.17. These code
points are disallowed even if they would otherwise be valid
according to the property-based rules specified in the previous
section.

Letters and digits other than the "traditional" letters and digits
allowed in IDNs, i.e., the OtherLetterDigits ("R") category
defined under Section 9.18.

Unassigned

Any code points that are not yet designated in the Unicode coded
character set are considered unassigned for purposes of the
IdentifierClass, and such code points are to be treated as
disallowed. See Section 9.10.

Saint-

Andre & Blanchet Standards Track [Page 10]

RFC

4.2.

4.3.

4.3.

Sai

8264 PRECIS Framework October 2017

5. Examples

As described in the Introduction to this document, the string classes
do not handle all issues related to string preparation and comparison
(such as case mapping); instead, such issues are handled at the level
of profiles. Examples for profiles of the IdentifierClass can be
found in [RFC8265] (the UsernameCaseMapped and UsernameCasePreserved
profiles).

FreeformClass

Some application technologies need strings that can be used in a
free-form way, e.g., as a password in an authentication exchange (see
[RFC8265]1) or a nickname in a chat room (see [RFC8266]1). We group
such things into a class called "FreeformClass" having the following
features.

Security Warning: As mentioned, the FreeformClass prioritizes
expressiveness over safety; Section 12.3 describes some of the
security hazards involved with using or profiling the
FreeformClass.

Security Warning: Consult Section 12.6 for relevant security
considerations when strings conforming to the FreeformClass, or a
profile thereof, are used as passwords.

1. Valid

0o Traditional letters and numbers, i.e., the LetterDigits ("A")
category first defined in [RFC5892] and listed here under
Section 9.1.

o Code points in the range U+0021 through U+@Q0Q7E, i.e., the
(printable) ASCII7 ("K") category defined under Section 9.11.

0o Space code points, i.e., the Spaces ("N") category defined under
Section 9.14.

o Symbol code points, i.e., the Symbols ("0") category defined under
Section 9.15.

0 Punctuation code points, i.e., the Punctuation ("P") category
defined under Section 9.16.

o Any code point that is decomposed and recomposed into something

other than itself under Unicode Normalization Form KC, i.e., the
HasCompat ("Q") category defined under Section 9.17.

nt-Andre & Blanchet Standards Track [Page 11]

RFC 8264 PRECIS Framework October 2017

0 Letters and digits other than the "traditional"™ letters and digits
allowed in IDNs, i.e., the OtherLetterDigits ("R") category
defined under Section 9.18.

4.3.2. Contextual Rule Required

o A number of code points from the Exceptions ("F") category defined
under Section 9.6.

o Joining code points, i.e., the JoinControl ("H") category defined
under Section 9.8.

4,.3.3. Disallowed

o O0ld Hangul Jamo code points, i.e., the 0ldHangulJamo ("I")
category defined under Section 9.9.

o Control code points, i.e., the Controls ("L") category defined
under Section 9.12.

o Ignorable code points, i.e., the PrecisIgnorableProperties ("M")
category defined under Section 9.13.

4.3.4. Unassigned

Any code points that are not yet designated in the Unicode coded
character set are considered unassigned for purposes of the
FreeformClass, and such code points are to be treated as disallowed.

4.3.5. Examples

As described in the Introduction to this document, the string classes
do not handle all issues related to string preparation and comparison
(such as case mapping); instead, such issues are handled at the level
of profiles. Examples for profiles of the FreeformClass can be found
in [RFC8265] (the OpaqueString profile) and [RFC8266] (the Nickname
profile).

4.4, Summary
The following table summarizes the differences between the
IdentifierClass and the FreeformClass (i.e., the disposition of a

code point as valid, contextual rule required, disallowed, or
unassigned), depending on its PRECIS category.

Saint-Andre & Blanchet Standards Track [Page 12]

RFC 8264 PRECIS Framework October 2017

T CATEGORY T IDENTIFIERCLASS T FREEFORMCLASS T
T (A) LetterDigits T Valid T Valid T
i (B) Unstable i [N/A (uﬁused)] i
i (C) IgnorableProperties i [N/A (uﬁused)] i
i (D) IgnorableBlocks | [N/A (uﬁused)] |
| (E) LDH | [N/A (unused)] |
I (F) Exceptions I Contextual | Contextual |
Rule Required Rule Required
i (G) BackwardCompatible i [Handled byIIDNA Rules] i
| (H) JoinControl | Contextual | Contextual |
Rule Required Rule Required
i (I) OldHangulJamo i Disallowed i Disallowed i
i (J) Unassigned i Unassigned i Unassigned i
i (K) ASCII7 i Valid i Valid i
i (L) Controls i Disallowed i Disallowed i
i (M) PrecisIgnorableProperties i Disallowed i Disallowed i
i (N) Spaces i Disallowed i Valid i
i (0) Symbols i Disallowed i Valid i
i (P) Punctuation i Disallowed i Valid i
i (Q) HasCompat i Disallowed i Valid i
i (R) OtherLetterDigits i Disallowed i Valid i

Table 1: Comparative Disposition of Code Points

Saint-Andre & Blanchet Standards Track [Page 13]

RFC 8264 PRECIS Framework October 2017

5. Profiles

This framework document defines the valid, contextual rule required,
disallowed, and unassigned rules for the IdentifierClass and the
FreeformClass. A profile of a PRECIS string class MUST define the
width mapping, additional mapping (if any), case mapping,
normalization, and directionality rules. A profile MAY also restrict
the allowable code points above and beyond the definition of the
relevant PRECIS string class (but MUST NOT add as valid any code
points that are disallowed by the relevant PRECIS string class).
These matters are discussed in the following subsections.

Profiles of the PRECIS string classes are registered with the IANA as
described under Section 11.3. Profile names use the following
convention: they are of the form "Profilename of BaseClass", where
the "Profilename" string is a differentiator and '"BaseClass" is the
name of the PRECIS string class being profiled; for example, the
profile used for opaque strings such as passwords is the OpaqueString
profile of the FreeformClass [RFC8265].

5.1. Profiles Must Not Be Multiplied beyond Necessity

The risk of profile proliferation is significant because having too
many profiles will result in different behavior across various
applications, thus violating what is known in user interface design
as the "Principle of Least Astonishment".

Indeed, we already have too many profiles. Ideally, we would have at
most two or three profiles. Unfortunately, numerous application
protocols exist with their own quirks regarding protocol strings.
Domain names, email addresses, instant messaging addresses, chat room
names, user nicknames or display names, filenames, authentication
identifiers, passwords, and other strings already exist in the wild
and need to be supported in existing application protocols such as
DNS, SMTP, the Extensible Messaging and Presence Protocol (XMPP),
Internet Relay Chat (IRC), NFS, the Internet Small Computer System
Interface (iSCSI), the Extensible Authentication Protocol (EAP), and
the Simple Authentication and Security Layer (SASL) [RFC4422], among
others.

Nevertheless, profiles must not be multiplied beyond necessity.

To help prevent profile proliferation, this document recommends
sensible defaults for the various options offered to profile creators
(such as width mapping and Unicode normalization). 1In addition, the
guidelines for designated experts provided under Section 10 are meant
to encourage a high level of due diligence regarding new profiles.

Saint-Andre & Blanchet Standards Track [Page 14]

RFC 8264 PRECIS Framework October 2017

5.2. Rules
5.2.1. Width Mapping Rule

The width mapping rule of a profile specifies whether width mapping
is performed on a string and how the mapping is done. Typically,
such mapping consists of mapping fullwidth and halfwidth code points,
i.e., code points with a Decomposition Type of Wide or Narrow, to
their decomposition mappings; as an example, " 0" (FULLWIDTH DIGIT
ZERO, U+FF10) would be mapped to "@" (DIGIT ZERO U+0030).

The normalization form specified by a profile (see below) has an
impact on the need for width mapping. Because width mapping is
performed as a part of compatibility decomposition, a profile
employing either Normalization Form KD (NFKD) or Normalization
Form KC (NFKC) does not need to specify width mapping. However, if
Unicode Normalization Form C (NFC) is used (as is recommended), then
the profile needs to specify whether to apply width mapping; in this
case, width mapping is in general RECOMMENDED because allowing
fullwidth and halfwidth code points to remain unmapped to their
compatibility variants would violate the "Principle of Least
Astonishment". For more information about the concept of width in
?ast A?ian scripts within Unicode, see Unicode Standard Annex #11
UAX11].

Note: Because the East Asian width property is not guaranteed to
be stable by the Unicode Standard (see
<http://unicode.org/policies/stability_policy.html> for details),
the results of applying a given width mapping rule might not be
consistent across different versions of Unicode.

5.2.2. Additional Mapping Rule

The additional mapping rule of a profile specifies whether additional
mappings are performed on a string, such as:

o Mapping of delimiter code points (such as '@', ':', '/', '+'
and '-').

0 Mapping of special code points (e.g., non-ASCII space code points
to SPACE (U+@020) or control code points to nothing).

The PRECIS mappings document [RFC779@] describes such mappings in
more detail.

Saint-Andre & Blanchet Standards Track [Page 15]

http://unicode.org/policies/stability_policy.html

RFC 8264 PRECIS Framework October 2017

5.2.3. C(Case Mapping Rule

The case mapping rule of a profile specifies whether case mapping
(instead of case preservation) is performed on a string and how the
mapping is applied (e.g., mapping uppercase and titlecase code points
to their lowercase equivalents).

If case mapping is desired (instead of case preservation), it is
RECOMMENDED to use the Unicode tolLowerCase() operation defined in the
Unicode Standard [Unicode]. 1In contrast to the Unicode toCaseFold()
operation, the toLowerCase() operation is less likely to violate the
"Principle of Least Astonishment", especially when an application
merely wishes to convert uppercase and titlecase code points to their
lowercase equivalents while preserving lowercase code points.
Although the toCaseFold() operation can be appropriate when an
application needs to compare two strings (such as in search
operations), in general few application developers and even fewer
users understand its implications, so toLowerCase() is almost always
the safer choice.

Note: Neither toLowerCase() nor toCaseFold() is designed to handle
various language-specific issues, such as the character "1" (LATIN
SMALL LETTER DOTLESS I, U+@131) in several Turkic languages. The
reader is referred to the PRECIS mappings document [RFC7790],
which describes these issues in greater detail.

In order to maximize entropy and minimize the potential for false
accepts, it is NOT RECOMMENDED for application protocols to map
uppercase and titlecase code points to their lowercase equivalents
when strings conforming to the FreeformClass, or a profile thereof,
are used in passwords; instead, it is RECOMMENDED to preserve the
case of all code points contained in such strings and then perform
case-sensitive comparison. See also the related discussion in
Section 12.6 of this document and in [RFC8265].

5.2.4. Normalization Rule

The normalization rule of a profile specifies which Unicode
Normalization Form (D, KD, C, or KC) is to be applied (see Unicode
Standard Annex #15 [UAX15] for background information).

In accordance with [RFC5198], Normalization Form C (NFC) 1is
RECOMMENDED.

Protocol designers and application developers need to understand that
certain Unicode normalization forms, especially NFKC and NFKD, can
result in significant loss of information in various circumstances
and that these circumstances can depend on the language and script of

Saint-Andre & Blanchet Standards Track [Page 16]

RFC 8264 PRECIS Framework October 2017

the strings to which the normalization forms are applied. Extreme
care should be taken when specifying the use of these normalization
forms.

5.2.5. Directionality Rule

The directionality rule of a profile specifies how to treat strings
containing what are often called "right-to-left" (RTL) code points
(see Unicode Standard Annex #9 [UAX9]). RTL code points come from
scripts that are normally written from right to left and are
considered by Unicode to, themselves, have right-to-left
directionality. Some strings containing RTL code points also contain
"left-to-right" (LTR) code points, such as ASCII numerals, as well as
code points without directional properties. Consequently, such
strings are known as "bidirectional strings".

Presenting bidirectional strings in different layout systems (e.g., a
user interface that is configured to handle primarily an RTL script
vs. an interface that is configured to handle primarily an LTR
script) can yield display results that, while predictable to those
who understand the display rules, are counterintuitive to casual
users. In particular, the same bidirectional string (in PRECIS
terms) might not be presented in the same way to users of those
different layout systems, even though the presentation is consistent
within any particular layout system. 1In some applications, these
presentation differences might be considered problematic and thus the
application designers might wish to restrict the use of bidirectional
strings by specifying a directionality rule. In other applications,
these presentation differences might not be considered problematic
(this especially tends to be true of more "free-form" strings) and
thus no directionality rule is needed.

The PRECIS framework does not directly address how to deal with
bidirectional strings across all string classes and profiles nor does
it define any new directionality rules, because at present there is
no widely accepted and implemented solution for the safe display of
arbitrary bidirectional strings beyond the Unicode bidirectional
algorithm [UAX9]. Although rules for management and display of
bidirectional strings have been defined for domain name labels and
similar identifiers through the '"Bidi Rule" specified in the IDNA2008
specification on right-to-left scripts [RFC5893], those rules are
quite restrictive and are not necessarily applicable to all
bidirectional strings.

The authors of a PRECIS profile might believe that they need to
define a new directionality rule of their own. Because of the
complexity of the issues involved, such a belief is almost always
misguided, even if the authors have done a great deal of careful

Saint-Andre & Blanchet Standards Track [Page 17]

RFC 8264 PRECIS Framework October 2017

research into the challenges of displaying bidirectional strings.
This document strongly suggests that profile authors who are thinking
about defining a new directionality rule should think again and
instead consider using the "Bidi Rule" [RFC5893] (for profiles based
on the IdentifierClass) or following the Unicode bidirectional
algorithm [UAX9] (for profiles based on the FreeformClass or in
situations where the IdentifierClass is not appropriate).

5.3. A Note about Spaces

6.

6

With regard to the IdentifierClass, the consensus of the PRECIS
Working Group was that spaces are problematic for many reasons,
including the following:

0 Many Unicode code points are confusable with SPACE (U+0020).

o Even if non-ASCII space code points are mapped to SPACE (U+0020),
space code points are often not rendered in user interfaces,
leading to the possibility that a human user might consider a
string containing spaces to be equivalent to the same string
without spaces.

o In some locales, some devices are known to generate a code point
other than SPACE (U+0020), such as ZERO WIDTH JOINER (U+200D),
when a user performs an action like pressing the space bar on a
keyboard.

One consequence of disallowing space code points in the
IdentifierClass might be to effectively discourage their use within
identifiers created in newer application protocols; given the
challenges involved with properly handling space code points
(especially non-ASCII space code points) in identifiers and other
protocol strings, the PRECIS Working Group considered this to be a
feature, not a bug.

However, the FreeformClass does allow spaces; this in turn enables
application protocols to define profiles of the FreeformClass that
are more flexible than any profiles of the IdentifierClass. 1In
addition, as explained in Section 6.3, application protocols can also
define application-layer constructs containing spaces.

Applications

.1. How to Use PRECIS in Applications

Although PRECIS has been designed with applications in mind,
internationalization is not suddenly made easy through the use of
PRECIS. Indeed, because it is extremely difficult for protocol

Saint-Andre & Blanchet Standards Track [Page 18]

RFC 8264 PRECIS Framework October 2017

designers and application developers to do the right thing for all
users when supporting internationalized strings, often the safest
option is to support only the ASCII range [RFC20] in various protocol
slots. This state of affairs is unfortunate but is the direct result
of the complexities involved with human languages (e.g., the vast
number of code points, scripts, user communities, and rules with
their inevitable exceptions), which kinds of strings application
developers and their users wish to support, the wide range of devices
that users employ to access services enabled by various Internet
protocols, and so on.

Despite these significant challenges, application and protocol
developers sometimes persevere in attempting to support
internationalized strings in their systems. These developers need to
think carefully about how they will use the PRECIS string classes, or
profiles thereof, in their applications. This section provides some
guidelines to application developers (and to expert reviewers of
application-protocol specifications).

o Don't define your own profile unless absolutely necessary (see
Section 5.1). Existing profiles have been designed for wide
reuse. It is highly likely that an existing profile will meet
your needs, especially given the ability to specify further
excluded code points (Section 6.2) and to build application-layer
constructs (see Section 6.3).

o Do specify:

* Exactly which entities are responsible for preparation,
enforcement, and comparison of internationalized strings (e.g.,
servers or clients).

* Exactly when those entities need to complete their tasks (e.g.,
a server might need to enforce the rules of a profile before
allowing a client to gain network access).

* Exactly which protocol slots need to be checked against which
profiles (e.g., checking the address of a message's intended
recipient against the UsernameCaseMapped profile [RFC8265] of
the IdentifierClass or checking the password of a user against
the OpaqueString profile [RFC8265] of the FreeformClass).

See [RF(C8265] and [RFC7622] for definitions of these matters for
several applications.

Saint-Andre & Blanchet Standards Track [Page 19]

RFC 8264 PRECIS Framework October 2017

6.2. Further Excluded Characters

An application protocol that uses a profile MAY specify particular
code points that are not allowed in relevant slots within that
application protocol, above and beyond those excluded by the string
class or profile.

That is, an application protocol MAY do either of the following:

1. Exclude specific code points that are allowed by the relevant
string class.

2. Exclude code points matching certain Unicode properties (e.g.,
math symbols) that are included in the relevant PRECIS string
class.

As a result of such exclusions, code points that are defined as valid
for the PRECIS string class or profile will be defined as disallowed
for the relevant protocol slot.

Typically, such exclusions are defined for the purpose of backward
compatibility with legacy formats within an application protocol.
These are defined for application protocols, not profiles, in order
to prevent multiplication of profiles beyond necessity (see

Section 5.1).

6.3. Building Application-Layer Constructs

Sometimes, an application-layer construct does not map in a
straightforward manner to one of the PRECIS string classes or a
profile thereof. Consider, for example, the "simple username"
construct in SASL [RFC4422]. Depending on the deployment, a simple
username might take the form of a user's full name (e.g., the user's
personal name followed by a space and then the user's family name).
Such a simple username cannot be defined as an instance of the
IdentifierClass or a profile thereof, because space code points are
not allowed in the IdentifierClass; however, it could be defined
using a space-separated sequence of IdentifierClass instances, as in
the following ABNF [RFC5234] from [RFC8265]:

userpart x(1xSP userpart)
1x(idpoint)

’

username
userpart

an "idpoint" is a Unicode code point that
can be contained in a string conforming to
the PRECIS IdentifierClass

Saint-Andre & Blanchet Standards Track [Page 20]

RFC 8264 PRECIS Framework October 2017

Similar techniques could be used to define many application-layer
constructs, say of the form "user@domain" or '"/path/to/file".

7. Order of Operations

To ensure proper comparison, the rules specified for a particular
string class or profile MUST be applied in the following order:

1. Width Mapping Rule

2. Additional Mapping Rule
3. Case Mapping Rule

4. Normalization Rule

5. Directionality Rule

6. Behavioral rules for determining whether a code point is valid,
allowed under a contextual rule, disallowed, or unassigned

As already described, the width mapping, additional mapping, case
mapping, normalization, and directionality rules are specified for
each profile, whereas the behavioral rules are specified for each
string class. Some of the logic behind this order is provided under
Section 5.2.1 (see also the PRECIS mappings document [RFC7790]1). In
addition, this order is consistent with IDNA2008, and with both
IDNA2003 and Stringprep before then, for the purpose of enabling code
reuse and of ensuring as much continuity as possible with the
Stringprep profiles that are obsoleted by several PRECIS profiles.

Because of the order of operations specified here, applying the rules
for any given PRECIS profile is not necessarily an idempotent
procedure (e.g., under certain circumstances, such as when Unicode
Normalization Form KC is used, performing Unicode normalization after
case mapping can still yield uppercase characters for certain code
points). Therefore, an implementation SHOULD apply the rules
repeatedly until the output string is stable; if the output string
does not stabilize after reapplying the rules three (3) additional
times after the first application, the implementation SHOULD
terminate application of the rules and reject the input string as
invalid.

8. Code Point Properties

In order to implement the string classes described above, this
document does the following:

Saint-Andre & Blanchet Standards Track [Page 21]

RFC 8264 PRECIS Framework October 2017

1. Reviews and classifies the collections of code points in the
Unicode coded character set by examining various code point
properties.

2. Defines an algorithm for determining a derived property value,
which can depend on the string class being used by the relevant
application protocol.

This document is not intended to specify precisely how derived
property values are to be applied in protocol strings. That
information is the responsibility of the protocol specification that
uses or profiles a PRECIS string class from this document. The value
of the property is to be interpreted as follows.

PROTOCOL VALID Those code points that are allowed to be used in any
PRECIS string class (currently, IdentifierClass and
FreeformClass). The abbreviated term "PVALID" is used to refer to
this value in the remainder of this document.

SPECIFIC CLASS PROTOCOL VALID Those code points that are allowed to
be used in specific string classes. 1In the remainder of this
document, the abbreviated term *_PVAL is used, where *x = (ID |
FREE), i.e., either "FREE_PVAL" for the FreeformClass or "ID_PVAL"
for the IdentifierClass. In practice, the derived property
ID_PVAL is not used in this specification, because every ID_PVAL
code point is PVALID.

CONTEXTUAL RULE REQUIRED Some characteristics of the code point,
such as its being invisible in certain contexts or problematic in
others, require that it not be used in a string unless specific
other code points or properties are present in the string. As in
IDNA2008, there are two subdivisions of CONTEXTUAL RULE REQUIRED:
the first for Join_controls (called "CONTEXTJ]") and the second for
other code points (called "CONTEXT0"). A string MUST NOT contain
any characters whose validity is context-dependent, unless the
validity is positively confirmed by a contextual rule. To check
this, each code point identified as CONTEXTJ or CONTEXTO in the
"PRECIS Derived Property Value" registry (Section 11.1) MUST have
a non-null rule. If such a code point is missing a rule, the
string is invalid. If the rule exists but the result of applying
the rule is negative or inconclusive, the proposed string is
invalid. The most notable of the CONTEXTUAL RULE REQUIRED code
points are the Join Control code points ZERO WIDTH JOINER (U+200D)
and ZERO WIDTH NON-JOINER (U+200C), which have a derived property
value of CONTEXTJ. See Appendix A of [RFC5892] for more
information.

Saint-Andre & Blanchet Standards Track [Page 22]

RFC 8264 PRECIS Framework October 2017

DISALLOWED Those code points that are not permitted in any PRECIS
string class.

SPECIFIC CLASS DISALLOWED Those code points that are not to be
included in one of the string classes but that might be permitted
in others. In the remainder of this document, the abbreviated
term x_DIS is used, where *x = (ID | FREE), i.e., either "FREE_DIS"
for the FreeformClass or "ID_DIS" for the IdentifierClass. 1In
practice, the derived property FREE_DIS is not used in this
specification, because every FREE_DIS code point is DISALLOWED.

UNASSIGNED Those code points that are not designated (i.e., are
unassigned) in the Unicode Standard.

The algorithm to calculate the value of the derived property is as
follows (implementations MUST NOT modify the order of operations
within this algorithm, because doing so would cause inconsistent
results across implementations):

If .cp. .in. Exceptions Then Exceptions(cp);

Else If .cp. .in. BackwardCompatible Then BackwardCompatible(cp);
Else If .cp. .in. Unassigned Then UNASSIGNED;

Else If .cp. .in. ASCII7 Then PVALID;

Else If .cp. .in. JoinControl Then CONTEXTJ;

Else If .cp. .in. OldHangulJamo Then DISALLOWED;

Else If .cp. .in. PrecisIgnorableProperties Then DISALLOWED;
Else If .cp. .in. Controls Then DISALLOWED;

Else If .cp. .in. HasCompat Then ID_DIS or FREE_PVAL;

Else If .cp. .in. LetterDigits Then PVALID;

Else If .cp. .in. OtherLetterDigits Then ID_DIS or FREE_PVAL;
Else If .cp. .in. Spaces Then ID_DIS or FREE_PVAL;

Else If .cp. .in. Symbols Then ID_DIS or FREE_PVAL;

Else If .cp. .in. Punctuation Then ID_DIS or FREE_PVAL;

Else DISALLOWED;

The value of the derived property calculated can depend on the string
class; for example, if an identifier used in an application protocol
is defined as profiling the PRECIS IdentifierClass then a space
character such as SPACE (U+0020) would be assigned to ID_DIS, whereas
if an identifier is defined as profiling the PRECIS FreeformClass
then the character would be assigned to FREE_PVAL. For the sake of
brevity, the designation "FREE_PVAL" is used herein, instead of the
longer designation "ID_DIS or FREE_PVAL". 1In practice, the derived
properties ID_PVAL and FREE_DIS are not used in this specification,
because every ID_PVAL code point is PVALID and every FREE_DIS code
point is DISALLOWED.

Saint-Andre & Blanchet Standards Track [Page 23]

RFC 8264 PRECIS Framework October 2017

Use of the name of a rule (such as "Exceptions") implies the set of
code points that the rule defines, whereas the same name as a
function call (such as "Exceptions(cp)") implies the value that the
code point has in the Exceptions table.

The mechanisms described here allow determination of the value of the
property for future versions of Unicode (including code points added
after Unicode 5.2 or 7.0, depending on the category, because some
categories mentioned in this document are simply pointers to IDNA2008
and therefore were defined at the time of Unicode 5.2). Changes in
Unicode properties that do not affect the outcome of this process
therefore do not affect this framework. For example, a code point
can have its Unicode General_Category value change from So to Sm, or
from Lo to L1, without affecting the algorithm results. Moreover,
even if such changes were to result, the BackwardCompatible list
(Section 9.7) can be adjusted to ensure the stability of the results.

9. Category Definitions Used to Calculate Derived Property
The derived property obtains its value based on a two-step procedure:

1. Code points are placed in one or more character categories either
(1) based on core properties defined by the Unicode Standard or
(2) by treating the code point as an exception and addressing the
code point based on its code point value. These categories are
not mutually exclusive.

2. Set operations are used with these categories to determine the
values for a property specific to a given string class. These
operations are specified under Section 8.

Note: Unicode property names and property value names might have
short abbreviations, such as '"gc" for the General_Category
property and "L1" for the Lowercase_Letter property value of the
gc property.

In the following specification of character categories, the operation
that returns the value of a particular Unicode code point property
for a code point is designated by using the formal name of that
property (from the Unicode PropertyAliases.txt file [PropertyAliases]
followed by "(cp)" for "code point". For example, the value of the
General_Category property for a code point is indicated by
General_Category(cp).

The first ten categories (A-J) shown below were previously defined
for IDNA2008 and are referenced from [RFC5892] to ease the
understanding of how PRECIS handles various code points. Some of
these categories are reused in PRECIS, and some of them are not;

Saint-Andre & Blanchet Standards Track [Page 24]

RFC 8264 PRECIS Framework October 2017

however, the lettering of categories is retained to prevent overlap
and to ease implementation of both IDNA2008 and PRECIS in a single
software application. The next eight categories (K-R) are specific
to PRECIS.

9.1. LetterDigits (A)

This category is defined in Section 2.1 of [RFC5892] and is included
by reference for use in PRECIS.

9.2. \Unstable (B)

This category is defined in Section 2.2 of [RFC5892]. However, it is
not used in PRECIS.

9.3. IgnorableProperties (C)

This category is defined in Section 2.3 of [RFC5892]. However, it is
not used in PRECIS.

Note: See the PrecisIgnorableProperties ("M") category below for a
more inclusive category used in PRECIS identifiers.

9.4. IgnorableBlocks (D)

This category is defined in Section 2.4 of [RFC5892]. However, it is
not used in PRECIS.

9.5. LDH (E)

This category is defined in Section 2.5 of [RFC5892]. However, it is
not used in PRECIS.

Note: See the ASCII7 ("K") category below for a more inclusive
category used in PRECIS identifiers.

9.6. Exceptions (F)

This category is defined in Section 2.6 of [RFC5892] and is included
by reference for use in PRECIS.

9.7. BackwardCompatible (G)

This category is defined in Section 2.7 of [RFC5892] and is included
by reference for use in PRECIS.

Note: Management of this category is handled via the processes
specified in [RFC5892]. At the time of this writing (and also at the

Saint-Andre & Blanchet Standards Track [Page 25]

RFC 8264 PRECIS Framework October 2017

time that RFC 5892 was published), this category consisted of the
empty set; however, that is subject to change as described in
RFC 5892.

9.8. JoinControl (H)

This category is defined in Section 2.8 of [RFC5892] and is included
by reference for use in PRECIS.

Note: In particular, the code points ZERO WIDTH JOINER (U+200D) and
ZERO WIDTH NON-JOINER (U+200C) are necessary to produce certain
combinations of characters in certain scripts (e.g., Arabic, Persian,
and Indic scripts), but if used in other contexts, they can have
consequences that violate the "Principle of Least Astonishment".
Therefore, these code points are allowed only in contexts where they
are appropriate, specifically where the relevant rule (CONTEXTJ or
CONTEXTO) has been defined. See [RFC5892] and [RFC5894] for further
discussion.

9.9. O0ldHangulJamo (I)

This category is defined in Section 2.9 of [RFC5892] and is included
by reference for use in PRECIS.

Note: Exclusion of these code points results in disallowing certain
archaic Korean syllables and in restricting supported Korean
syllables to preformed, modern Hangul characters.

9.10. Unassigned (J)

This category is defined in Section 2.10 of [RFC5892] and is included
by reference for use in PRECIS.

9.11. ASCII7 (K)

This PRECIS-specific category consists of all printable, non-space
code points from the 7-bit ASCII range. By applying this category,
the algorithm specified under Section 8 exempts these code points
from other rules that might be applied during PRECIS processing, on
the assumption that these code points are in such wide use that
disallowing them would be counterproductive.

K: cp is in {0021..007E}

Saint-Andre & Blanchet Standards Track [Page 26]

RFC 8264 PRECIS Framework October 2017

9.12. Controls (L)

This PRECIS-specific category consists of all control code points,
such as LINE FEED (U+000A).

L: Control(cp) = True
9.13. PrecisIgnorableProperties (M)

This PRECIS-specific category is used to group code points that are
discouraged from use in PRECIS string classes.

M: Default_Ignorable_Code_Point(cp) = True or
Noncharacter_Code_Point(cp) = True

The definition for Default_Ignorable_Code_Point can be found in the
DerivedCoreProperties.txt file [DerivedCoreProperties].

Note: In general, these code points are constructs such as so-called
"soft hyphens", certain joining code points, various specialized code
points for use within Unicode itself (e.g., language tags and
variation selectors), and so on. Disallowing these code points in
PRECIS reduces the potential for unexpected results in the use of
internationalized strings.

9.14. Spaces (N)

This PRECIS-specific category is used to group code points that are
spaces.

N: General_Category(cp) is in {Zs}
9.15. Symbols (0)

This PRECIS-specific category is used to group code points that are
symbols.

0: General_Category(cp) is in {Sm, Sc, Sk, So}
9.16. Punctuation (P)

This PRECIS-specific category is used to group code points that are
punctuation.

P: General_Category(cp) is in {Pc, Pd, Ps, Pe, Pi, Pf, Po}

Saint-Andre & Blanchet Standards Track [Page 27]

RFC 8264 PRECIS Framework October 2017

0.

0.

10.

Sa

17. HasCompat (Q)

This PRECIS-specific category is used to group any code point that is
decomposed and recomposed into something other than itself under
Unicode Normalization Form KC.

Q: toNFKC(cp) !'= cp

Typically, this category is true of code points that are
"compatibility decomposable characters" as defined in the Unicode
Standard.

The toNFKC() operation returns the code point in Normalization
Form KC. For more information, see Unicode Standard Annex #15
[UAX15].

18. OtherLetterDigits (R)

This PRECIS-specific category is used to group code points that are
letters and