Network Working Group J. Lennox
Request for Comments: 3880 X. Wu
Category: Standards Track H. Schulzrinne
Columbia University

October 2004

Call Processing Language (CPL):
A Language for User Control of Internet Telephony Services

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the “Internet
Official Protocol Standards™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2004).

Abstract

This document defines the Call Processing Language (CPL), a language
to describe and control Internet telephony services. It is designed
to be implementable on either network servers or user agents. It is
meant to be simple, extensible, easily edited by graphical clients,
and independent of operating system or signalling protocol. It is
suitable for running on a server where users may not be allowed to
execute arbitrary programs, as it has no variables, loops, or ability
to run external programs.

Lennox, et al. Standards Track [Page 1]

RFC 3880 CPL October 2004

Table of Contents

1. Introduction . .
1.1. Conventions of Thls Document.
2. Structure of CPL Scripts .
2.1. High-level Structure. .
2.2. Abstract Structure of a CaII Processlng Actlon
2.3. Location Model.
2.4. XML Structure . -
3. Script Structure: Overview .
4. Switches . .
4.1. Address SW|tches .
4.1.1. Usage of "address sW|tch" W|th SIP
4.2. String Switches
4.2.1. Usage of "string—switch" with SIP .
4.3. Language Switches . e e e e e e e oL
4.3.1. Usage of "language-switch™ with SIP .
4.4. Time Switches . . .
4.4_.1. iCalendar dlfferences and |mplementat|on
issues. .
4.5. Priority Switches . e e e e e e el oL
4.5.1. Usage of "priority-switch” with SIP .
5. Location Modifiers . e e e e e e e oo
5.1. Explicit Location . . .
5.1.1. Usage of "Iocatlon" W|th SIP
5.2. Location Lookup . .
5.2.1. Usage of "Iookup" with SIP.
5.3. Location Removal. . .
5.3.1. Usage of remove Iocatlon" W|th SIP .
6. Signalling Operations.
6.1. Proxy o o o . . .
6.1.1. Usage of "proxy" with SIP .
6.2. Redirect. . . - e e e e e .o
6.2.1. Usage of ‘redirect” with SIP.
6.3. Reject. . e e e e e e o
6.3.1. Usage of "reject”™ with SIP.
7. Non-signalling Operations. - e e e
7.1. Mail. e e e e e e e e e e e e e e e e e e e
7.1.1. Suggested Content of Mailed Information .
7.2. Log . e e e e e e oo oL
8. Subactions . .
9. Ancillary Informatlon
10. Default Behavior .
11. CPL Extensions .
12 Examples o o o . o o o . o . .
12.1. Example: Call Redirect Unconditional.
12.2. Example: Call Forward Busy/No Answer. . .
12.3. Example: Call Forward: Redirect and Default .
Lennox, et al. Standards Track

OCoOo~NoOOUIADMDMW

RPRRRRER
GORNDMWNE

. 20
.21
. 22
. 22
. 23
. 23
. 24
. 25
. 25
. 26
. 26
. 26
. 29
. 30
. 30
. 30
. 31
.31
. 32
. 32
. 33
. 34
. 35
. 35
. 37
. 37
. 38
. 39

[Page 2]

RFC 3880 CPL October 2004

12.4 Example: Call Screening . . - e e e e - - . .40
12.5. Example: Priority and Language Routlng- e ¥
12.6. Example: Outgoing Call Screening. 42
12.7 Example: Time-of-day Routing. 43
12.8 Example: Location Filtering . . v
12.9. Example: Non-signalling Operatlons e e e e e e 4 . . .45
12.10. Example: Hypothetical Extensions. 46
12.11. Example: A Complex Example. 48
13. Security Considerations. . . . _ . _49
14. 1ANA Considerations. . . 2 K
14.1. URN Sub-Namespace Reglstratlon for
urn:ietf:params:xml:ns:cpl. 49
14.2. Schema registration50
14.3. MIME Registration50
15. Acknowledgments. . . Y
A. An Algorithm for ResoIV|ng Tlme SWltches - V24
B. Suggested Usage of CPL with H.323. . . . < = - - -53
B.1. Usage of "address-switch™ with H. 323 - = = -« < « - . .53
B.2. Usage of "'string-switch™ with H.323 55
B.3. Usage of "language-switch™ with H.323 55
B.4. Usage of "priority—switch" with H.32355
B.5. Usage of "location™ with H.323. 56
B.6. Usage of "Iookup" with H.323. . . . - = - - - . - . .56
B.7. Usage of "'remove-location™ with H. 323 - = = -« <« « - . .56
C. The XML Schema for CPL .56
Normative References < < <70
Informative References _11
Authors” Addresses . . Y 451
Full Copyright Statement e £
1. Introduction

The Call Processing Language (CPL) is a language that can be used to

describe and control Internet telephony services. It is not tied to

any particular signalling architecture or protocol; it Is anticipated
that it will be used with both the Session Initiation Protocol (SIP)

[1] and H.323 [16].-

CPL is powerful enough to describe a large number of services and
features, but it is limited in power so that it can run safely in
Internet telephony servers. The intention is to make it impossible
for users to do anything more complex (and dangerous) than describe
Internet telephony services. The language is not Turing-complete,
and provides no way to write loops or recursion.

CPL is also designed to be easily created and edited by graphical

tools. It is based on the Extensible Markup Language (XML) [2], so
parsing it is easy and many parsers for it are publicly available.

Lennox, et al. Standards Track [Page 3]

RFC 3880 CPL October 2004

The structure of the language maps closely to its behavior, so an
editor can understand any valid script, even ones written by hand.
The language is also designed so that a server can easily confirm the
validity of a script when the server receives it, rather than
discovering problems whille a call is being processed.

Implementations of CPL are expected to take place both in Internet
telephony servers and in advanced clients; both can usefully process
and direct users” calls. This document primarily addresses the usage
in servers. A mechanism will be needed to transport scripts between
clients and servers; this document does not describe such a
mechanism, but related documents will.

The framework and requirements for the CPL architecture are described
in RFC 2824, "Call Processing Language Framework and Requirements"

[17].
1.1. Conventions of This Document

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL"™, "SHALL NOT', 'SHOULD'", "SHOULD NOT', ""RECOMMENDED", 'MAY",
and "OPTIONAL"™ are to be interpreted as described in BCP 14, RFC 2119
[3] and indicate requirement levels for compliant CPL
implementations.

Some paragraphs are indented, like this; they give motivations of
design choices, advice to implementors, or thoughts on future
development of or extensions to CPL. They are not essential to
the specification of the language, and are non-normative.

2. Structure of CPL Scripts
2.1. High-level Structure

A CPL script consists of two types of information: ancillary
information about the script, and call processing actions.

A call processing action is a structured tree that describes the
operations and decisions a telephony signalling server performs on a
call set-up event. There are two types of call processing actions:
top-level actions and subactions. Top-level actions are actions that
are triggered by signalling events that arrive at the server. Two
top-level actions are defined: "incoming', the action performed when
a call arrives whose destination is the owner of the script, and
"outgoing', the action performed when a call arrives whose originator
is the owner of the script.

Lennox, et al. Standards Track [Page 4]

RFC 3880 CPL October 2004

Subactions are actions which can be called from other actions. CPL
forbids subactions from being called recursively: see Section 8.

Ancillary information is information which is necessary for a server
to correctly process a script, but which does not directly describe
any operations or decisions. Currently, no ancillary information is
defined, but the section is reserved for use by extensions.

2.2. Abstract Structure of a Call Processing Action

Abstractly, a call processing action is described by a collection of
nodes that describe operations that can be performed or decisions
that can be made. A node may have several parameters, which specify
the precise behavior of the node; they usually also have outputs,
which depend on the result of the decision or action.

For a graphical representation of a CPL action, see Figure 1. Nodes
and outputs can be thought of informally as boxes and arrows; CPL is
designed so that actions can be conveniently edited graphically using
this representation. Nodes are arranged in a tree, starting at a
single root node; outputs of nodes are connected to additional nodes.
When an action is run, the action or decision described by the
action’s top-level node is performed; based on the result of that
node, the server follows one of the node’s outputs, and the
subsequent node it points to is performed; this process continues
until a node with no specified outputs is reached. Because the graph
is acyclic, this will occur after a bounded and predictable number of
nodes are visited.

IT an output to a node does not point to another node, i1t indicates
that the CPL server should perform a node- or protocol-specific
action. Some nodes have specific default behavior associated with
them; for others, the default behavior is implicit in the underlying
signalling protocol, or can be configured by the administrator of the
server. For further details on this, see Section 10.

Lennox, et al. Standards Track [Page 5]

RFC 3880 CPL October 2004

busy
| Address-switch | | location Il | proxy |---————- \
Call-->] field: origin | ->] url: sip:jones@ |->|timeout:] timeout]
| subfield: host | /7 | example.com |l | 10s |---——---- |
| |

————————————————— V4 | | failure]
| subdomain-of: | | |---———--- |
| example.com | |
l-----——-——-—————- /
| otherwise 2
| I\|- Voicemail
| I \.

->| location

url: sip:jones@ redirect |

example.com

| |

| |1

| voicemail. |->] |
| [
| |

Figure 1: Sample CPL Action: Graphical Version
2.3. Location Model

For flexibility, one piece of information necessary for CPL is not
given as node parameters: the set of locations to which a call is to
be directed. Instead, this set of locations is stored as an implicit
global variable throughout the execution of a processing action (and
its subactions). This allows locations to be retrieved from external
sources, Filtered, and so forth, without requiring general language
support for such operations (which could harm the simplicity and
tractability of understanding the language). The specific operations
which add, retrieve, or filter location sets are given in Section 5.

For the incoming top-level call processing action, the location set
is initialized to the empty set. For the outgoing action, it is
initialized to the destination address of the call.

2.4. XML Structure

Syntactically, CPL scripts are represented by XML documents. XML is
thoroughly specified by the XML specification [2], and implementors
of this specification should be familiar with that document.

However, as a brief overview, XML consists of a hierarchical
structure of tags; each tag can have a number of attributes. It is
visually and structurally very similar to HTML [18], as both
languages are simplifications of the earlier and larger standard SGML

[19].

Lennox, et al. Standards Track [Page 6]

RFC 3880 CPL October 2004

See Figure 2 for the XML document corresponding to the graphical
representation of the CPL script in Figure 1. Both nodes and outputs
in CPL are represented by XML tags; parameters are represented by XML
tag attributes. Typically, node tags contain output tags, and vice-
versa (with a few exceptions: see Sections 5.1, 5.3, 7.1, and 7.2).

The connection between the output of a node and another node is
represented by enclosing the tag representing the pointed-to node
inside the tag for the outer node’s output. Convergence (several
outputs pointing to a single node) is represented by subactions,
discussed further in Section 8.

The higher-level structure of a CPL script is represented by tags
corresponding to each piece of ancillary information, subactions, and
top-level actions, in order. This higher-level information is all
enclosed in a special tag "cpl"™, the outermost tag of the XML
document.

A complete XML Schema for CPL is provided in Appendix C. The
remainder of the main sections of this document describe the
semantics of CPL, while giving its syntax informally. For the formal
syntax, please see the appendix.

3. Script Structure: Overview

As mentioned, a CPL script consists of ancillary information,
subactions, and top-level actions. The full syntax of the "cpl'" node
is given in Figure 3.

<?xml version="1.0" encoding="UTF-8"7>
<cpl xmlIns="urn:ietf:params:xml:ns:cpl"”
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:ietf:params:xml:ns:cpl cpl.xsd ">
<subaction id="voicemail'>
<location url="sip:jones@voicemail _example.com">
<redirect />
</location>
</subaction>
<incoming>
<address-switch field="origin" subfield="host">
<address subdomain-of="‘example.com">
<location url="'sip:jones@example.com">
<proxy timeout="10">
<busy> <sub ref="voicemail" /> </busy>
<noanswer> <sub ref="voicemail" /> </noanswer>
<failure> <sub ref="voicemail" /> </failure>
</proxy>
</location>

Lennox, et al. Standards Track [Page 7]

RFC 3880 CPL October 2004

</address>
<otherwise>
<sub ref="voicemail" />
</otherwise>
</address-switch>
</incoming>
</cpl>

Figure 2: Sample CPL Script: XML Version

Tag: ‘“cpl”
Parameters: None
Sub-tags: "ancillary" See Section 9
"subaction”™ See Section 8
"outgoing" Top-level actions to take on this user’s
outgoing calls
incoming" Top-level actions to take on this user’s

incoming calls
Figure 3: Syntax of the top-level "cpl" tag

Call processing actions, both top-level actions and subactions,
consist of a tree of nodes and outputs. Nodes and outputs are both
described by XML tags. There are four categories of CPL nodes:
switches, which represent choices a CPL script can make, location
modifiers, which add or remove locations from the location set,
signalling operations, which cause signalling events in the
underlying protocol, and non-signalling operations, which trigger
behavior which does not effect the underlying protocol.

4. Switches

Switches represent choices a CPL script can make, based on either
attributes of the original call request or items independent of the
call.

All switches are arranged as a list of conditions that can match a

variable. Each condition corresponds to a node output; the output

points to the next node that should be executed if the condition is
true. The conditions are tried iIn the order they are presented in

the script; the output corresponding to the first node to match is

taken.

There are two special switch outputs that apply to every switch type.
The output "not-present', which MAY occur anywhere in the list of
outputs, is true if the variable the switch was to match was not
present in the original call setup request. (In this document, this
is sometimes described by saying that the information is "absent'.)

Lennox, et al. Standards Track [Page 8]

RFC 3880 CPL October 2004

The output "otherwise"™, which MUST be the last output specified if it
is present, matches if no other condition matched.

IT no condition matches and no "otherwise" output was present in the
script, the default script behavior is taken. See Section 10 for
more information on this.

Switches MAY contain no outputs. They MAY only contain an
"otherwise' output.

Such switches are not particularly useful, but might be created by
tools which automatically generate CPL scripts.

4.1. Address Switches
Address switches allow a CPL script to make decisions based on one of

the addresses present in the original call request. They are
summarized in Figure 4.

Node: "address-switch"
Outputs: "address" Specific addresses to match
Parameters: "field"” "origin", "destination",
or "original-destination”
"subfield"” "address-type', "user', "host",

“"port", "tel', or "display"”
(also: "password"™ and "alias-type')

Output: "address™

Parameters: 'is" Exact match
"contains" Substring match (for "display" only)
"'subdomain-of" Sub-domain match (for "host"™, "tel')

Figure 4: Syntax of the "address-switch" node

Address switches have two node parameters: "field” and "subfield".
The mandatory "field" parameter allows the script to specify which
address is to be considered for the switch: either the call’s origin
address (field "origin'™), its current destination address (field
"destination'), or its original destination (field "original-
destination'™), the destination the call had before any earlier
forwarding was invoked. Servers MAY define additional field values.

The optional "subfield" specifies which part of the address is to be
considered. The possible subfield values are: "address-type",
"user', "host', "port", "tel"™, and "display'”. Additional subfield
values MAY be defined for protocol-specific values. (The subfield
"password™ is defined for SIP in Section 4.1.1; the subfield "alias-
type" is defined for H.323 in Appendix B.1.) If no subfield is

Lennox, et al. Standards Track [Page 9]

RFC 3880

CPL October 2004

specified, the "entire" address is matched; the precise meaning of
this is defined for each underlying signalling protocol. Servers MAY
define additional subfield values.

The subfields are defined as follows:

address-type: This indicates the type of the underlying address,

user:

host:

port:

tel:

i.e., the URI scheme, if the address can be represented by a

URI. The types specifically discussed by this document are
“sip", "tel", and '"h323". The address type is not case-
sensitive. It has a value for all defined address types.

This subfield of the address indicates, for e-mail style

addresses, the user part of the address. For a telephone
number style address, it includes the subscriber number.

This subfield is case-sensitive; it may be absent.

This subfield of the address indicates the Internet host
name or IP address corresponding to the address, in host
name, IPv4, or IPv6 [4] textual representation format. Host
names are compared as strings. [IP addresses are compared
numerically. (In particular, the presence or location of an
IPv6 :: omitted-zero-bits block is not significant for
matching purposes.) Host names are never equal to IP
addresses -- no DNS resolution is performed. IPv4 addresses
are never equal to IPv6 addresses, even if the IPv6 address
is a v4-in-v6 embedding. This subfield is not case
sensitive, and may be absent.

For host names only, subdomain matching is supported with
the "subdomain-of" match operator. The '"'subdomain-of"
operator ignores leading dots in the hostname or match
pattern, if any.

This subfield indicates the TCP or UDP port number of the
address, numerically, in decimal format. It is not case
sensitive, as it MUST only contain decimal digits. Leading
zeros are ignored.

This subfield indicates a telephone subscriber number, if
the address contains such a number. It is not case
sensitive (telephone numbers may contain the symbols A%,
’B”, ’C”, or ’D’), and may be absent. It may be matched
using the "subdomain-of'" match operator. Punctuation and
separator characters in telephone numbers are discarded.

Lennox, et al. Standards Track [Page 10]

RFC 3880 CPL October 2004

display: This subfield indicates a "display name"™ or user-visible
name corresponding to an address. It is a Unicode string,
and is matched using the case-insensitive algorithm
described in Section 4.2. The "contains"™ operator may be
applied to 1t. It may be absent.

For any completely unknown subfield, the server MAY reject the script
at the time it is submitted with an indication of the problem; if a
script with an unknown subfield is executed, the server MUST consider
the "not-present'” output to be the valid one.

The "address" output tag may take exactly one of three possible

parameters, indicating the kind of matching allowed.

is: An output with this match operator is followed if the
subfield being matched in the "address-switch” exactly
matches the argument of the operator. It may be used for
any subfield, or for the entire address if no subfield was
specified.

subdomain-of: This match operator applies only for the subfields
"host' and "tel™. In the former case, it matches if the
hostname being matched is a subdomain of the domain given in
the argument of the match operator; thus, subdomain-
of="example.com" would match the hostnames "example.com",
"research.example.com", and
""zaphod.sales.internal _.example.com”. 1P addresses may be
given as arguments to this operator; however, they only
match exactly. In the case of the "tel” subfield, the
output matches if the telephone number being matched has a
prefix that matches the argument of the match operator;
subdomain-of="1212555" would match the telephone number "1
212 555 1212."

contains: This match operator applies only for the subfield
"display"”. The output matches if the display name being
matched contains the argument of the match as a substring.

4.1.1. Usage of "address-switch™ with SIP
For SIP, the "origin" address corresponds to the address in the
"From" header, "destination' corresponds to the "Request-URI', and
"original-destination" corresponds to the "To" header.
The "display" subfield of an address is the display-name part of the

address, if it is present. Because of SIP’s syntax, the
"destination”™ address field will never have a "display” subfield.

Lennox, et al. Standards Track [Page 11]

RFC 3880 CPL October 2004

The "address-type" subfield of an address is the URI scheme of that
address. Other address fields depend on that "address-type".

For SIP URIs, the "user™, "host"™, and "port"” subfields correspond to
the "user,"™ "host,”™ and "port” elements of the URI syntax. (Note
that, following the definitions of RFC 3261 [1], a SIP URI which does
not specify a port is not the same as an explicit port 5060; the
former is indicated by an absent port subfield.) The "tel" subfield
is defined to be the "user™ part of the URI, with visual separators
stripped, if the "user=phone' parameter is given to the URI, or if
the server i1s otherwise configured to recognize the user part as a
telephone number. An additional subfield, "password”, is defined to
correspond to the "password"™ element of the SIP URI, and is case-
sensitive. However, use of this field is NOT RECOMMENDED for general
security reasons.

For tel URLs, the "tel”™ and "user™ subfields are the subscriber name;
in the former case, visual separators are stripped. The "host"™ and
"port" subfields are both not present.

For h323 URLs, subfields MAY be set according to the scheme described
in Appendix B.

For other URI schemes, only the "address-type' subfield is defined by
this specification; servers MAY set other pre-defined subfields, or
MAY support additional subfields.

IT no subfield is specified for addresses in SIP messages, the string
matched is the URI part of the address. For "is"™ matches, standard
SIP URI matching rules are used; for 'contains' matches, the URI is

used verbatim.
4.2. String Switches
String switches allow a CPL script to make decisions based on free-

form strings present in a call request. They are summarized in
Figure 5.

Node: "string-switch"
Outputs: "string” Specific string to match
Parameters: "field"” "subject™, *organization®,

"user-agent', or "display”
Output: "string"
Parameters: "is" Exact match
"contains" Substring match

Figure 5: Syntax of the "string-switch” node

Lennox, et al. Standards Track [Page 12]

RFC 3880 CPL October 2004

String switches have one node parameter: "field'". The mandatory
"field" parameter specifies which string is to be matched.

String switches are dependent on the call signalling protocol being
used.

Four fields are defined and listed below. The value of each of these
fields is a free-form Unicode string with no other structure defined.

subject: The subject of the call.
organization: The organization of the originator of the call.

user-agent: The name of the program or device with which the call
request was made.

display: Free-form text associated with the call, intended to be
displayed to the recipient, with no other semantics defined
by the signalling protocol.

Strings are matched as case-insensitive Unicode strings, in the
following manner. First, strings are canonicalized to the
"Compatibility Composition”™ (KC) form, as specified in Unicode
Standard Annex #15 [5]. Then, strings are compared using locale-
insensitive caseless mapping, as specified in Unicode Standard Annex
#21 [6]-

Code to perform the first step, in Java and Perl, is available;
see the links from Annex 5 of UAX 15 [5]. The case-insensitive
string comparison in the Java standard class libraries already
performs the second step; other Unicode-aware libraries should be
similar.

The output tag of string matching is named "string", and has a
mandatory argument, one of "is™ or "contains™, indicating whole-
string match or substring match, respectively.

4.2.1. Usage of "string-switch” with SIP
For SIP, the fields "subject", "organization"™, and "user-agent"
correspond to the SIP header fields with the same name. These are
used verbatim as they appear in the message.

The field "display" is not used, and is never present.

Lennox, et al. Standards Track [Page 13]

RFC 3880 CPL October 2004

4.3. Language Switches

Language switches allow a CPL script to make decisions based on the
languages in which the originator of the call wishes to communicate.
They are summarized in Figure 6.

Node: "language-switch"
Outputs: "language" Specific string to match
Parameters: None

Output: "language"

Parameters: 'matches" Match if the given language
matches a language-range of the
call.

Figure 6: Syntax of the "language-switch' node
Language switches take no parameters.

The ""language™ output takes one parameter, 'matches'”. The value of
the parameter is a language-tag, as defined in RFC 3066 [7]- The
caller may have specified a set of language-ranges, also as defined
in RFC 3066. The CPL server checks each language-tag specified by
the script against the language-ranges specified in the request.

See RFC 3066 for the details of how language-ranges match language-
tags. Briefly, a language-range matches a language-tag if it exactly
equals the tag, or if it exactly equals a prefix of the tag such that
the first character following the prefix is "-"

IT the caller specified the special language-range "*", it is ignored
for the purpose of matching. Languages with a '"q" value of 0 are
also ignored.

This switch MAY be not-present.
4.3.1. Usage of "language-switch" with SIP

The language-ranges for the '"language-switch” switch are obtained
from the SIP "Accept-Language' header field. The switch is not-
present if the initial SIP request did not contain this header field.

Note that because of CPL’s first-match semantics in switches, "q"
values other than 0 of the "Accept-Language' header fields are
ignored.

Lennox, et al. Standards Track [Page 14]

RFC 3880 CPL October 2004

4.4_. Time Switches
Time switches allow a CPL script to make decisions based on the time
and/or date the script is being executed. They are summarized iIn
Figure 7.

Time switches are independent of the underlying signalling protocol.

Node: "time-switch"
Outputs: "time" Specific time to match
Parameters: "tzid" RFC 2445 Time Zone ldentifier
“tzurl” RFC 2445 Time Zone URL
Output: "time"
Parameters: "dtstart" Start of interval (RFC 2445 DATE-TIME)
"dtend" End of interval (RFC 2445 DATE-TIME)
"duration” Length of interval (RFC 2445 DURATION)
"freq" Frequency of recurrence (‘'secondly",

"minutely", "hourly", "daily",
"weekly"™, "monthly", or "yearly')

"interval” How often the recurrence repeats
“until” Bound of recurrence (RFC 2445 DATE-TIME)
“count™ Number of occurrences of recurrence
"bysecond" List of seconds within a minute
"byminute" List of minutes within an hour
""byhour" List of hours of the day

"byday"’ List of days of the week
"bymonthday"* List of days of the month
"byyearday™ List of days of the year

"byweekno" List of weeks of the year

"bymonth" List of months of the year

"wkst" First day of the work week
"bysetpos" List of values within

set of events specified
Figure 7: Syntax of the "time-switch" node

Time switches are based closely on the specification of recurring
intervals of time in the Internet Calendaring and Scheduling Core
Object Specification (iCalendar COS), RFC 2445 [8].

This allows CPL scripts to be generated automatically from
calendar books. It also allows us to re-use the extensive
existing work specifying time intervals.

IT future standards-track documents are published that update or

obsolete RFC 2445, any changes or clarifications those documents make
to recurrence handling apply to CPL time-switches as well.

Lennox, et al. Standards Track [Page 15]

RFC 3880 CPL October 2004

An algorithm to determine whether an instant falls within a given
recurrence is given in Appendix A.

The "time-switch”™ tag takes two optional parameters, "tzid" and
“tzurl™, both of which are defined in RFC 2445 (Sections 4.8.3.1 and
4.8.3.5 respectively). The "tzid" is the identifying label by which
a time zone definition is referenced. |If it begins with a forward
slash (solidus), it references a to-be-defined global time zone
registry; otherwise it is locally-defined at the server. The "tzurl”
gives a network location from which an up-to-date VTIMEZONE
definition for the timezone can be retrieved.

While "tzid" labels that do not begin with a forward slash are
locally defined, it is RECOMMENDED that servers support at least the
naming scheme used by the Olson Time Zone database [9]. Examples of
timezone databases that use the Olson scheme are the zoneinfo files
on most Unix-like systems, and the standard Java TimeZone class.

Servers SHOULD resolve "tzid" and "tzurl"™ references to time zone
definitions at the time the script is uploaded. They MAY
periodically refresh these resolutions to obtain the most up-to-date
definition of a time zone. |If a "tzurl" becomes invalid, servers
SHOULD remember the most recent valid data retrieved from the URL.

IT a script is uploaded with a "tzid" and "tzurl' which the CPL
server does not recognhize or cannot resolve, it SHOULD diagnose and
reject this at script upload time. If neither "tzid" nor "tzurl" are
present, all non-UTC times within this time switch should be
interpreted as being "floating™ times, i.e., that they are specified
in the local timezone of the CPL server.

Because of daylight-savings-time changes over the course of a
year, it is necessary to specify time switches in a given
timezone. UTC offsets are not sufficient, or a time-of-day
routing rule which held between 9 am and 5 pm in the eastern
United States would start holding between 8 am and 4 pm at the end
of October.

Authors of CPL servers should be careful to handle correctly the
intervals when local time is discontinuous, at the beginning or end
of daylight-savings time. Note especially that some times may occur
more than once when clocks are set back. The algorithm in Appendix A
is believed to handle this correctly.

Time nodes specify a list of periods during which their output should
be taken. They have two required parameters: "dtstart"™, which
specifies the beginning of the first period of the list, and exactly
one of "dtend" or "duration"™, which specify the ending time or the

Lennox, et al. Standards Track [Page 16]

RFC 3880 CPL October 2004

duration of the period, respectively. The "dtstart" and "dtend"
parameters are formatted as iCalendar COS DATE-TIME values, as
specified in Section 4.3.5 of RFC 2445 [8]. Because time zones are
specified in the top-level "time-switch”™ tag, only forms 1 or 2
(floating or UTC times) can be used. The "duration' parameter is
given as an iCalendar COS DURATION parameter, as specified in section
4.3.6 of RFC 2445. Both the DATE-TIME and the DURATION syntaxes are
subsets of the corresponding syntaxes from 1SO 8601 [20].

For a recurring interval, the "duration”™ parameter MUST be small
enough such that subsequent intervals do not overlap. For non-
recurring intervals, durations of any positive length are permitted.
Zero-length and negative-length durations are not allowed.

IT no other parameters are specified, a time node indicates only a
single period of time. More complicated sets of period intervals are
constructed as recurrences. A recurrence is specified by including
the "freq" parameter, which indicates the type of recurrence rule.
Parameters other than "dtstart”, "dtend", and "duration'™ SHOULD NOT
be specified unless "freq" is present, though CPL servers SHOULD
accept scripts with such parameters present, and ignore the other
parameters.

The "freq" parameter takes one of the following values: "secondly",
to specify repeating periods based on an interval of a second or
more, "minutely', to specify repeating periods based on an interval
of a minute or more, "hourly", to specify repeating periods based on
an interval of an hour or more, "daily", to specify repeating periods
based on an interval of a day or more, “weekly"™, to specify repeating
periods based on an interval of a week or more, "monthly", to specify
repeating periods based on an interval of a month or more, and
"yearly", to specify repeating periods based on an interval of a year
or more. These values are not case-sensitive.

The "interval™ parameter contains a positive integer representing how
often the recurrence rule repeats. The default value is "1", meaning
every second for a '"'secondly" rule, every minute for a "minutely"
rule, every hour for an "hourly" rule, every day for a "daily" rule,
every week for a "weekly" rule, every month for a "monthly"™ rule, and
every year for a "yearly" rule.

The "until"™ parameter defines an iCalendar COS DATE or DATE-TIME
value which bounds the recurrence rule in an inclusive manner. If
the value specified by "until” is synchronized with the specified
recurrence, this date or date-time becomes the last instance of the
recurrence. |If specified as a date-time value, then it MUST be

Lennox, et al. Standards Track [Page 17]

RFC 3880 CPL October 2004

specified in UTC time format. |If not present, and the "count"
parameter is not also present, the recurrence is considered to repeat
forever.

The "count™ parameter defines the number of occurrences at which to
range-bound the recurrence. The "dtstart"” parameter counts as the
first occurrence. The "until”™ and "count" parameters MUST NOT occur
in the same "time" output.

The "bysecond" parameter specifies a comma-separated list of seconds
within a minute. Valid values are 0 to 59. The "byminute"™ parameter
specifies a comma-separated list of minutes within an hour. Valid
values are 0 to 59. The "byhour"™ parameter specifies a comma-
separated list of hours of the day. Valid values are 0 to 23.

The "byday' parameter specifies a comma-separated list of days of the
week. "MO™ indicates Monday, "TU" indicates Tuesday, "WE"™ indicates
Wednesday, "TH" indicates Thursday, "FR" indicates Friday, "SA"
indicates Saturday, and "SU" indicates Sunday. These values are not
case-sensitive.

Each "byday'" value can also be preceded by a positive (+n) or
negative (-n) iInteger. |If present, this indicates the nth occurrence
of the specific day within the "monthly" or "yearly" recurrence. For
example, within a "monthly" rule, +1MO (or simply 1MO) represents the
first Monday within the month, whereas -1MO represents the last
Monday of the month. If an integer modifier is not present, it means
all days of this type within the specified frequency. For example,
within a "monthly"™ rule, MO represents all Mondays within the month.

The "bymonthday' parameter specifies a comma-separated list of days
of the month. Valid values are 1 to 31 or -31 to -1. For example,
-10 represents the tenth to the last day of the month.

The "byyearday' parameter specifies a comma-separated list of days of
the year. Valid values are 1 to 366 or -366 to -1. For example, -1
represents the last day of the year (December 31st) and -306
represents the 306th to the last day of the year (March 1st).

The "byweekno' parameter specifies a comma-separated list of ordinals
specifying weeks of the year. Valid values are 1 to 53 or -53 to -1.
This corresponds to weeks according to week numbering as defined in
ISO 8601 [20]. A week is defined as a seven day period, starting on
the day of the week defined to be the week start (see "wkst™). Week
number one of the calendar year is the first week which contains at
least four (4) days iIn that calendar year. This parameter is only
valid for "yearly" rules. For example, 3 represents the third week
of the year.

Lennox, et al. Standards Track [Page 18]

RFC 3880 CPL October 2004

Note: Assuming a Monday week start, week 53 can only occur when
January 1 is a Thursday or, for leap years, if January 1 is a
Wednesday -

The "bymonth™ parameter specifies a comma-separated list of months of
the year. Valid values are 1 to 12.

The "wkst" parameter specifies the day on which the work week starts.
Valid values are '"MO"™, "TU", "WE", "TH", "FR"™, "SA"™ and "SU". This
is significant when a "weekly" recurrence has an interval greater
than 1, and a "byday' parameter is specified. This is also
significant in a "yearly" recurrence when a "byweekno' parameter is
specified. The default value is "MO", following 1SO 8601 [20].

The "bysetpos' parameter specifies a comma-separated list of values
which corresponds to the nth occurrence within the set of events
specified by the rule. Valid values are 1 to 366 or -366 to -1. It
MUST only be used in conjunction with another byxxx parameter. For
example, "the last work day of the month" could be represented as:

<time -timerange- freq="monthly" byday="MO,TU,WE,TH,FR"
bysetpos="-1">

Each "bysetpos'" value can include a positive (+n) or negative (-n)
integer. |IT present, this indicates the nth occurrence of the
specific occurrence within the set of events specified by the rule.

IT byxxx parameter values are found which are beyond the available
scope (i.e., bymonthday="30" in February), they are simply ignored.

Byxxx parameters modify the recurrence in some manner. Byxxx rule
parts for a period of time which is the same or greater than the
frequency generally reduce or limit the number of occurrences of the
recurrence generated. For example, freqg="daily" bymonth="1" reduces
the number of recurrence instances from all days (if the "bymonth"
parameter is not present) to all days in January. Byxxx parameters
for a period of time less than the frequency generally increase or
expand the number of occurrences of the recurrence. For example,
freqg=""yearly" bymonth="1,2" increases the number of days within the
yearly recurrence set from 1 (if "bymonth"™ parameter is not present)
to 2.

IT multiple Byxxx parameters are specified, then after evaluating the
specified "freq" and "interval" parameters, the Byxxx parameters are
applied to the current set of evaluated occurrences in the following
order: "bymonth", "byweekno", "byyearday', "bymonthday', "byday",
“"byhour™, "byminute', "bysecond™, and "bysetpos'; then “count™ and
"until” are evaluated.

Lennox, et al. Standards Track [Page 19]

RFC 3880 CPL October 2004

Here is an example of evaluating multiple Byxxx parameters.

<time dtstart="19970105T083000" duration="10M"
freqg=""yearly" interval="2" bymonth="1" byday=""SU"
byhour="8,9" byminute="30"">

First, the interval="2" would be applied to freg="'yearly" to arrive
at "every other year." Then, bymonth="1" would be applied to arrive
at "every January, every other year." Then, byday="SU" would be
applied to arrive at "every Sunday in January, every other year."
Then, byhour="8,9" would be applied to arrive at "every Sunday in
January at 8 AM and 9 AM, every other year." Then, byminute="30"
would be applied to arrive at "every Sunday in January at 8:30 AM and
9:30 AM, every other year." Then the second is derived from
"dtstart” to end up in "every Sunday in January from 8:30:00 AM to
8:40:00 AM, and from and 9:30:00 AM to 9:40:00 AM, every other year."
Similarly, if the "byminute™, "byhour™, "byday', "bymonthday", or
"bymonth" parameter were missing, the appropriate minute, hour, day,
or month would have been retrieved from the "dtstart" parameter.

The iCalendar COS RDATE, EXRULE, and EXDATE recurrence rules are not
specifically mapped to components of the time-switch node.

Equivalent functionality to the exception rules can be attained by
using the ordering of switch rules to exclude times using earlier
rules; equivalent functionality to the additional-date RDATE rules
can be attained by using "sub" nodes (see Section 8) to link multiple
outputs to the same subsequent node.

The "not-present™ output is never true for a time switch. However,
it MAY be included to allow switch processing to be more regular.

4.4_.1. iCalendar Differences and Implementation Issues
(This sub-sub-section is non-normative.)

The specification of recurring events in this section is identical
(except for syntax and formatting issues) to that of RFC 2445 [8],
with only one additional restriction. That one restriction is that
consecutive instances of recurrence intervals may not overlap.

It was a matter of some debate, during the design of CPL, whether the
entire iCalendar COS recurrence specification should be included in
CPL, or whether only a subset should be included. It was eventually
decided that compatibility between the two protocols was of primary
importance. This imposes some additional implementation issues on
implementors of CPL servers.

Lennox, et al. Standards Track [Page 20]

RFC 3880 CPL October 2004

It does not appear to be possible to determine, in constant time,
whether a given instant of time falls within one of the intervals
defined by a full iCalendar COS recurrence. The primary concerns are
as follows:

0 The "count" parameter cannot be checked in constant running
time, since it requires that the server enumerate all
recurrences from "dtstart" to the present time, in order to
determine whether the current recurrence satisfies the
parameter. However, a server can expand a '‘count™ parameter
once, off-line, to determine the date of the last recurrence.
This date can then be treated as a virtual "until™ parameter
for the server’s internal processing.

o Similarly, the "bysetpos" parameter requires that the server
enumerate all instances of the occurrence from the start of the
current recurrence set until the present time. This requires
somewhat more complex pre-processing, but generally, a single
recurrence with a "bysetpos' parameter can be split up into
several recurrences without them.

o Finally, constant running time of time switches also requires
that a candidate starting time for a recurrence can be
established quickly and uniquely, to check whether it satisfies
the other restrictions. This requires that a recurrence’s
duration not be longer than its repetition interval, so that a
given instant cannot fall within several consecutive potential
repetitions of the recurrence. The restriction that
consecutive intervals not overlap partially satisfies this
condition, but does not fully ensure it. Again, to some extent
pre-processing can help resolve this.

The algorithm given in Appendix A runs in constant time after these
pre-processing steps.

Servers ought to check that recurrence rules do not create any absurd
run-time or memory requirements, and reject those that do, just as
they ought to check that CPL scripts in general are not absurdly
large.

4.5. Priority Switches
Priority switches allow a CPL script to make decisions based on the

priority specified for the original call. They are summarized in
Figure 8. They are dependent on the underlying signalling protocol.

Lennox, et al. Standards Track [Page 21]

RFC 3880 CPL October 2004

Node: "priority-switch"
Outputs: "priority"” Specific priority to match
Parameters: None

Output: “priority”

Parameters: "less" Match if priority is less
than that specified
""greater" Match if priority is greater
than that specified
"equal™ Match if priority is equal

to that specified
Figure 8: Syntax of the "priority-switch" node
Priority switches take no parameters.

The "priority” tag takes one of the three parameters 'greater",

"less', or "equal'”. The values of these parameters are one of the
following priorities: in decreasing order, "emergency', "urgent",
"normal™, and ""non-urgent". These values are matched in a case-

insensitive manner. Outputs with the "less" parameter are taken if
the priority of the call is less than the priority given in the
argument, and so forth.

IT no priority is specified in a message, the priority is considered
to be "normal™. If an unknown priority is specified in the call, it
is considered to be equivalent to "normal" for the purposes of
""greater™ and "less'" comparisons, but it is compared literally for
"equal™ comparisons.

Since every message has a priority, the "not-present" output is never
true for a priority switch. However, it MAY be included, to allow
switch processing to be more regular.

4.5.1. Usage of "priority-switch”™ with SIP

The priority of a SIP message corresponds to the "Priority" header in
the initial "INVITE" message.

5. Location Modifiers
The abstract location model of CPL is described in Section 2.3. The
behavior of several of the signhalling operations (defined in Section

6) is dependent on the current location set specified. Location
nodes add or remove locations from the location set.

Lennox, et al. Standards Track [Page 22]

RFC 3880 CPL October 2004

There are three types of location nodes defined. Explicit locations
add literally-specified locations to the current location set,
location lookups obtain locations from some outside source, and
location filters remove locations from the set, based on some
specified criteria.

5.1. Explicit Location

Explicit location nodes specify a location literally. Their syntax
is described in Figure 9.

Explicit location nodes are dependent on the underlying signalling

protocol.
Node: "location"
Outputs: None (Next node follows directly)
Next node: Any node
Parameters: "furl” URL of address to add to location set
"priority"” Priority of this location (0.0-1.0)
"clear" Whether to clear the location set before

adding the new value
Figure 9: Syntax of the "location™ node

Explicit location nodes have three node parameters. The mandatory
"url" parameter’s value is the URL of the address to add to the
location set. Only one address may be specified per location node;
multiple locations may be specified by cascading these nodes.

The optional "priority" parameter specifies a priority for the
location. Its value is a floating-point number between 0.0 and 1.0.
IT it is not specified, the server SHOULD assume a default priority
of 1.0. The optional "clear" parameter specifies whether the
location set should be cleared before adding the new location to it.
Its value can be "yes"™ or "no", with "no" as the default.

Basic location nodes have only one possible result, since there is no
way that they can fail. (If a basic location node specifies a
location which isn’t supported by the underlying signalling protocol,
the script server SHOULD detect this and report it to the user at the
time the script is submitted.) Therefore, their XML representations
do not have explicit output tags; the <location> tag directly
contains another node.

5.1.1. Usage of "location" with SIP

All SIP locations are represented as URLs, so the locations specified
in "location" tags are interpreted directly.

Lennox, et al. Standards Track [Page 23]

RFC 3880 CPL October 2004

5.2. Location Lookup
Locations can also be specified up through external means, through
the use of location lookups. The syntax of these tags is given in
Figure 10.
Location lookup is dependent on the underlying signalling protocol.

Node: "lookup"

Outputs: 'success" Next node if lookup was successful
"notfound”™ Next node if lookup found no addresses
"failure"” Next node if lookup failed
Parameters: 'source" Source of the lookup
"timeout" Time to try before giving up on the lookup
“clear” Whether to clear the location set before

adding the new values

Output: 'success"
Parameters: none

Output: "notfound"
Parameters: none

Output: "failure”
Parameters: none

Figure 10: Syntax of the "lookup™ node

Location lookup nodes have one mandatory parameter and two optional
parameters. The mandatory parameter is ''source', the source of the
lookup. This can either be a URI, or a non-URI value. If the value
of "source™ is a URI, it indicates a location which the CPL server
can query to obtain an object with the text/uri-list media type (see
the 1ANA registration of this type, which also appears in RFC 2483
[10]). The query is performed verbatim, with no additional
information (such as URI parameters) added. The server adds the
locations contained in this object to the location set.

CPL servers MAY refuse to allow URI-based sources for location
queries for some or all URI schemes. In this case, they SHOULD
reject the script at script upload time.

There has been discussion of having CPL servers add URI parameters
to the location request, so that (for instance) CGl scripts could
be used to resolve them. However, the consensus was that this
should be a CPL extension, not a part of the base specification.

Lennox, et al. Standards Track [Page 24]

RFC 3880 CPL October 2004

Non-URL sources indicate a source not specified by a URL which the
server can query for addresses to add to the location set. The only
non-URL source currently defined is "registration”™, which specifies
all the locations currently registered with the server.

The "lookup™ node also has two optional parameters. The "timeout"
parameter specifies the time, as a positive integer number of
seconds, the script is willing to wait for the lookup to be
performed. If this is not specified, its default value is 30. The
"clear" parameter specifies whether the location set should be
cleared before the new locations are added.

Lookup has three outputs: "success", "notfound"”, and "failure".
Notfound is taken if the lookup process succeeded but did not find
any locations; failure is taken if the lookup failed for some reason,
including that the specified timeout was exceeded. If a given output
is not present, script execution terminates and the default behavior
is performed.

5.2.1. Usage of "lookup™ with SIP

For SIP, the "registration”™ lookup source corresponds to the
locations registered with the server using "REGISTER"™ messages.

5.3. Location Removal
A CPL script can also remove locations from the location set, through
the use of the "remove-location”™ node. The syntax of this node is

defined in Figure 11.

The meaning of this node is dependent on the underlying signalling

Protocol.
Node: "remove-location"
Outputs: None (Next node follows directly)
Next node: Any node
Parameters: "location” Location to remove

Figure 11: Syntax of the "remove-location' node

A "remove-location” node removes locations from the location set. It
is primarily useful following a "lookup™ node. An example of this is
given in Section 12.8.

The "remove-location”™ node has one optional parameter. The parameter
"location' gives the URI of a location to be removed from the set, in
a signalling-protocol-dependent manner. If this parameter is not
given, all locations are removed from the set.

Lennox, et al. Standards Track [Page 25]

RFC 3880 CPL October 2004

The "remove-location” node has no explicit output tags. In the XML
syntax, the XML "remove-location" tag directly encloses the next
node’s tag.

5.3.1. Usage of "remove-location™ with SIP

The location specified in the "location" parameter of the "remove-
location" node is matched against the location set using the standard
rules for SIP URI matching (as are used, e.g., to match Contact
addresses when refreshing registrations).

6. Signalling Operations
Signalling operation nodes cause signalling events in the underlying
signalling protocol. Three signalling operations are defined:
"proxy,"™ "redirect,” and "reject."

6.1. Proxy
Proxy causes the triggering call to be forwarded on to the currently
specified set of locations. The syntax of the proxy node is given in
Figure 12.
The specific signalling events invoked by the "proxy'" node are

signalling-protocol-dependent, though the general concept should
apply to any signalling protocol.

Lennox, et al. Standards Track [Page 26]

RFC 3880

Node:
Outputs:

Parameters:

Output:
Parameters:

Output:
Parameters:

Output:
Parameters:

Output:
Parameters:

Output:
Parameters:

"proxy"
"busy"
""noanswer""
"redirection”
"failure”
"default"
"timeout"

"recurse"
"ordering"

llbusyll
none

"noanswer"*
none

"redirection
none

"failure”
none

"default"
none

CPL October 2004

Next node if call attempt returned "busy"
Next node if call attempt was not
answered before timeout

Next node if call attempt was redirected
Next node if call attempt failed

Default next node for unspecified outputs
Time to try before giving up on the

call attempt

Whether to recursively look up
redirections

What order to try the location set in.

Figure 12: Syntax of the *proxy"™ node

After a proxy operation has completed, the CPL server chooses the
"best" response to the call attempt, as defined by the signalling
protocol or the server’s administrative configuration rules.

IT the call attempt was successful, CPL execution terminates and the
server proceeds to its default behavior (normally, to allow the call

to be set up).
"proxy'" node’s outputs is taken.

Otherwise, the next node corresponding to one of the

The "busy" output is followed if

the call was busy, "noanswer' is followed if the call was not
answered before the 'timeout" parameter expired, "redirection” 1

followed if the call was redirected, and "failure"

S
is followed if the

call setup failed for any other reason.

IT one of the conditions above is true, but the corresponding output
was not specified, the "default" output of the "proxy"™ node is

fol lowed

instead.

IT there is also no "default"” node specified, CPL

execution terminates and the server returns to its default behavior
(normally, to forward the best response upstream to the originator).

Lennox, et al.

Standards Track

[Page 27]

RFC 3880 CPL October 2004

Note: CPL extensions to allow in-call or end-of-call operations
will require an additional output, such as 'success', to be added.

IT no locations were present in the set, or if the only locations in
the set were locations to which the server cannot proxy a call (for
example, "http" URLs), the "failure"™ output is taken.

Proxy has three optional parameters. The "timeout" parameter
specifies the time, as a positive integer number of seconds, to wait
for the call to be completed or rejected; after this time has
elapsed, the call attempt is terminated and the "noanswer™ branch is
taken. If this parameter is not specified, the default value is 20
seconds if the "proxy" node has a "noanswer™ or "default" output
specified; otherwise the server SHOULD allow the call to ring for a
reasonably long period of time (to the maximum extent that server
policy allows).

The second optional parameter is "recurse', which can take two
values, "yes" or "no This specifies whether the server should
automatically attempt to place further call attempts to telephony
addresses in redirection responses that were returned from the
initial server. Note that if the value of "recurse" is "yes", the
“redirection”™ output to the script is never taken. In this case this
output SHOULD NOT be present. The default value of this parameter is
"'yes' .

The third optional parameter is "ordering”. This can have three
possible values: "parallel”, "sequential'™, and "first-only"”. This
parameter specifies in what order the locations of the location set
should be tried. Parallel asks that they all be tried
simultaneously; sequential asks that the one with the highest
priority be tried first, the one with the next-highest priority
second, and so forth, until one succeeds or the set is exhausted.
First-only instructs the server to try only the highest-priority
address i1n the set, and then follow one of the outputs. The priority
of locations in a set is determined by server policy, though CPL
servers SHOULD honor the "priority" parameter of the "location" tag.
The default value of this parameter is "parallel™.

Once a proxy operation completes, if control is passed on to other
nodes, all locations which have been used are cleared from the
location set. That is, the location set is emptied of proxyable
locations if the "ordering" was "parallel”™ or "sequential'; the
highest-priority item in the set is removed from the set if
"ordering"” was "first-only"”. (In all cases, non-proxyable locations
such as "http"” URIs remain.) In the case of a "redirection" output,
the new addresses to which the call was redirected are then added to
the location set.

Lennox, et al. Standards Track [Page 28]

RFC 3880 CPL October 2004

6.1.1. Usage of "proxy" with SIP

For SIP, the best response to a 'proxy'" node is determined by the
algorithm of the SIP specification. The node’s outputs correspond to
the following events:

busy: A 486 or 600 response was the best response received for the
call request.

redirection: A 3xx response was the best response received for the
call request.

failure: Any other 4xx, 5xxX, or 6xx response was the best response
received for the call request.

no-answer: No final response was received for the call request
before the timeout expired.

SIP servers SHOULD honor the 'q" parameter of SIP registrations when
determining location priority.

6.2. Redirect

Redirect causes the server to direct the calling party to attempt to
place its call to the currently specified set of locations. The
syntax of this node is specified in Figure 13.

The specific behavior the redirect node invokes is dependent on the
underlying signalling protocol involved, though its semantics are
generally applicable.

Node: ™redirect”
Outputs: None (No node may follow)
Next node: None
Parameters: ‘‘permanent”™ Whether the redirection should be

considered permanent
Figure 13: Syntax of the "redirect"” node

Redirect immediately terminates execution of the CPL script, so this
node has no outputs and no next node. It has one parameter,
"permanent', which specifies whether the result returned should
indicate that this is a permanent redirection. The value of this
parameter is either "yes" or "no" and its default value is "no."

Lennox, et al. Standards Track [Page 29]

RFC 3880 CPL October 2004

6.2.1. Usage of "redirect" with SIP

The SIP server SHOULD send a 3xx class response to a call request
upon executing a "'redirect"” tag. If "permanent” was 'yes', the
server SHOULD send the response ""301" (Moved permanently), otherwise
it SHOULD send 302" (Moved temporarily).

6.3. Reject

Reject nodes cause the server to reject the call attempt. Their
syntax is given iIn Figure 14. The specific behavior they invoke is
dependent on the underlying signalling protocol involved, though
their semantics are generally applicable.

Node: ™"reject"
Outputs: None (No node may follow)
Next node: None
Parameters: ''status'" Status code to return

"reason" Reason phrase to return
Figure 14: Syntax of the "reject' node

A reject node immediately terminates the execution of a CPL script,
so this node has no outputs and no next node.

This node has two arguments: "status' and "reason'. The '"'status"
argument is required, and can take one of the values "busy",
"notfound”, "reject”, "error™, or a signalling-protocol-defined
status.

The "reason' argument optionally allows the script to specify a
reason for the rejection.

6.3.1. Usage of "reject” with SIP
Servers which implement SIP SHOULD also allow the "status" field to
be a numeric argument corresponding to a SIP status in the 4xx, 5xx,
or 6xx range.
They SHOULD send the "‘reason' parameter in the SIP reason phrase.
A suggested mapping of the named statuses is as follows. Servers MAY
use a different mapping, though similar semantics SHOULD be
preserved.

"busy'': 486 Busy Here

"notfound”: 404 Not Found

Lennox, et al. Standards Track [Page 30]

RFC 3880 CPL October 2004

"reject": 603 Decline
"error': 500 Internal Server Error
7. Non-signalling Operations
In addition to the signalling operations, CPL defines several

operations which do not affect and are not dependent on the telephony
signalling protocol.

7.1. Mail
The mail node causes the server to notify a user of the status of the
CPL script through electronic mail. Its syntax is given in Figure
15.
Node: ™"mail”
Outputs: None (Next node follows directly)
Next node: Any node
Parameters: url” Mailto url to which the mail should be sent

Figure 15: Syntax of the "mail" node

The "mail" node takes one argument: a "mailto™ URL giving the
address, and any additional desired parameters, of the mail to be
sent. The server sends the message containing the content to the
given url; it SHOULD also include other status information about the
original call request and the CPL script at the time of the
notification.

Using a full "mailto™ URL rather than just an e-mail address
allows additional e-mail headers to be specified, such as
<mail url="mailto:jones@example.com?subject=Lookup%20failed” />.

A mail node has only one possible result, since failure of e-mail
delivery cannot reliably be known in real time. Therefore, its XML
representation does not have output tags: the <mail> tag directly
contains another node tag.

Note that the syntax of XML requires that ampersand characters, "&",
which are used as parameter separators in "mailto”™ URLs, be quoted as
"&'" inside parameter values (see Section C.12 of the XML
specification [2]).

Lennox, et al. Standards Track [Page 31]

RFC 3880 CPL October 2004

7.1.1. Suggested Content of Mailed Information

This section presents suggested guidelines for the mail sent as a
result of the "mail"™ node, for requests triggered by SIP. The
message mailed (triggered by any protocol) SHOULD contain all this
information, but servers MAY elect to use a different format.

1. If the "mailto"” URI did not specify a subject header, the
subject of the e-mail is "[CPL]", followed by the subject
header of the SIP request. If the URI specified a subject
header, it is used instead.

2. The "From"™ field of the e-mail is set to a CPL server
configured address, overriding any "From"™ field in the "mailto"
URI.

3. Any "Reply-To™ header in the URI is honored. |If none is given,
then an e-mail-ized version of the origin field of the request
is used, if possible (e.g., a SIP "From" header with a sip: URI
would be converted to an e-mail address by stripping the URI
scheme).

4_ 1T the "mailto” URI specifies a body, it is used. |If none was
specified, the body SHOULD contain at least the identity of the
caller (both the caller’s display name and address), the date
and time of day, the call subject, and if available, the call
priority.

The server SHOULD honor the user’s requested languages, and send the
mail notification using an appropriate language and character set.

7.2. Log
The Log node causes the server to log information about the call to
non-volatile storage. Its syntax is specified in Figure 16.
Node: "log"
Outputs: None (Next node follows directly)
Next node: Any node
Parameters: ‘'‘name" Name of the log file to use

"comment™ Comment to be placed in log file
Figure 16: Syntax of the "log" node
Log takes two arguments, both optional: "name', which specifies the
name of the log, and "comment™, which gives a comment about the

information being logged. Servers SHOULD also include other
information in the log, such as the time of the logged event,

Lennox, et al. Standards Track [Page 32]

RFC 3880 CPL October 2004

information that triggered the call to be logged, and so forth. Logs
are specific to the owner of the script which logged the event. IFf
the "name™ parameter is not given, the event is logged to a standard,
server-defined log file for the script owner. This specification
does not define how users may retrieve their logs from the server.

The name of a log is a logical name only, and does not necessarily
correspond to any physical file on the server. The interpretation of
the log file name is server defined, as is a mechanism to access
these logs. The CPL server SHOULD NOT directly map log names
uninterpreted onto local file names, for security reasons, lest a
security-critical file be overwritten.

A correctly operating CPL server SHOULD NOT ever allow the "log"
event to fail. As such, log nodes can have only one possible result,
and their XML representation does not have explicit output tags. A
CPL <log> tag directly contains another node tag.

8. Subactions

XML syntax defines a tree. To allow more general call flow diagrams,
and to allow script re-use and modularity, we define subactions.

Two tags are defined for subactions: subaction definitions and
subaction references. Their syntax is given in Figure 17.

Tag: ‘'subaction”
Subtags: Any node
Parameters: "id" Name of this subaction
Pseudo-node: "'sub™
Outputs: None in XML tree
Parameters: "'ref" Name of subaction to execute

Figure 17: Syntax of subactions and "'sub'™ pseudo-nodes

Subactions are defined through ''subaction" tags. These tags are
placed in the CPL script after any ancillary information (see Section
9), but before any top-level tags. They take one argument: "id", a
token indicating a script-chosen name for the subaction. The "id"
value for every "subaction™ tag in a script MUST be unique within
that script.

Subactions are called from "sub"™ tags. The "sub"™ tag is a "pseudo-
node', and can be used anyplace in a CPL action that a true node
could be used. It takes one parameter, '"ref", the name of the
subaction to be called. The "sub™ tag contains no outputs of its
own, instead control passes to the subaction.

Lennox, et al. Standards Track [Page 33]

RFC 3880 CPL October 2004

References to subactions MUST refer to subactions defined before the
current action. A '"'sub"™ tag MUST NOT refer to the action it appears
in, or to any action defined later in the CPL script. Top-level
actions cannot be called from "sub™ tags, or through any other means.
Script servers MUST verify at the time the script is submitted that
no "sub™ node refers to any subaction that is not its proper
predecessor.

Allowing only back-references of subs forbids any sort of
recursion. Recursion would introduce the possibility of non-
terminating or non-decidable CPL scripts, a possibility our
requirements specifically excluded.

Every sub MUST refer to a subaction 1D defined within the same CPL
script. No external links are permitted.

Subaction IDs are case sensitive.

IT any subsequent version or extension defines external linkages,
it should probably use a different tag, perhaps XLink [21].
Ensuring termination in the presence of external links is a
difficult problem.

9. Ancillary Information

No ancillary information is defined in the base CPL specification.
IT ancillary information, not part of any operation, is found to be
necessary for a CPL extension, it SHOULD be placed within this tag.

The (trivial) definition of the ancillary information tag is given in
Figure 18.

It may be useful to include timezone definitions inside CPL
scripts directly, rather than referencing them externally with
"tzid" and "tzurl™ parameters. |If It is, an extension could be
defined to include them here.

Tag: "ancillary”
Parameters: None
Subtags: None

Figure 18: Syntax of the "ancillary" tag

Lennox, et al. Standards Track [Page 34]

RFC 3880 CPL October 2004

10.

11.

Default Behavior

When a CPL node reaches an unspecified output, either because the
output tag Is not present, or because the tag is present but does not
contain a node, the CPL server’s behavior is dependent on the current
state of script execution. This section gives the operations that
should be taken in each case.

no location modifications or signalling operations performed,
location set empty: Look up the user’s location through
whatever mechanism the server would use if no CPL script were
in effect. Proxy, redirect, or send a rejection message,
using whatever policy the server would use in the absence of
a CPL script.

no location modifications or signalling operations performed,
location set non-empty: (This can only happen for outgoing
calls.) Proxy the call to the addresses in the location set.

location modifications performed, no signalling operations: Proxy
or redirect the call, whichever is the server’s standard
policy, to the addresses in the current location set. If the
location set is empty, return a "notfound” rejection.

noanswer output of proxy, no timeout given: (This is a special
case.) If the "noanswer"™ output of a proxy node is
unspecified, and no timeout parameter was given to the proxy
node, the call should be allowed to ring for the maximum
length of time allowed by the server (or the request, if the
request specified a timeout).

proxy operation previously taken: Return whatever the "best"™
response is of all accumulated responses to the call to this
point, according to the rules of the underlying signalling
protocol.

CPL Extensions

Servers MAY support additional CPL features beyond those listed in
this document. Some of the extensions which have been suggested are
a means of querying how a call has been authenticated, richer control
over H.323 addressing, end-system or administrator-specific features,
regular-expression matching for strings and addresses, and mid-call
or end-of-call controls.

CPL extensions are indicated by XML namespaces [11]. Every extension
MUST have an appropriate XML namespace assigned to it. The XML
namespace of the extension MUST be different from the XML namespace

Lennox, et al. Standards Track [Page 35]

RFC 3880 CPL October 2004

defined in Section 14. The extension MUST NOT change the syntax or
semantics of the CPL schema defined in this document. All XML tags
and attributes that are part of the extension MUST be appropriately
qualified so as to place them within that namespace.

Tags or attributes in a CPL script which are in the global namespace
(i.e., not associated with any namespace) are equivalent to tags and
attributes in the CPL namespace "urn:ietf:params:xml:ns:cpl.

A CPL script SHOULD NOT specify any namespaces it does not use. For
compatibility with non-namespace-aware parsers, a CPL script MAY omit
the base CPL namespace for a script which does not use any
extensions.

A CPL server MUST reject any script containing a reference to a
namespace it does not understand. It MUST reject any script
containing an extension tag or attribute that is not qualified to be
in an appropriate namespace.

A syntax such as

<extension-switch>
<extension has="http://www.example.com/foo"">
[extended things]
</extension>
<otherwise>
[non-extended things]
</otherwise>
</extension-switch>

was suggested as an alternate way of handling extensions. This
would allow scripts to be uploaded to a server without requiring a
script author to somehow determine which extensions a server
supports. However, experience developing other languages, notably
Sieve [22], was that this added excessive complexity to languages.
The "extension-switch"™ tag could, of course, itself be defined in
a CPL extension.

In the XML schema of CPL, we introduce three abstract elements,
namely “toplevelaction”, “switch”, and ”action’, which accordingly
have the abstract type *TopLevelActionType”, “SwitchType”, and
>ActionType”. Any top-level action in a CPL extension MUST be
defined as the substitutionGroup of the abstract ’toplevelaction’
element, and have the type extended from the “TopLevelActionType’.
Any switch in a CPL extension MUST be defined as the
substitutionGroup of the abstract ’switch” element, and have the type

Lennox, et al. Standards Track [Page 36]

RFC 3880 CPL October 2004

extended from the ’SwitchType’. Any action in a CPL extension MUST
be defined as the substitutionGroup of the abstract ’action’ element,
and have the type extended from the ”ActionType’.

12. Examples
12.1. Example: Call Redirect Unconditional

The script i