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I nt roducti on

DSA [ FI PS-186-4] and ECDSA [ X9.62] are two standard digital signature
schenes. They provide data integrity and verifiable authenticity in
various protocols.

One characteristic of DSA and ECDSA is that they need to produce, for
each signature generation, a fresh random val ue (hereafter designated
as k). For effective security, k nust be chosen randomy and
uniformy froma set of nodular integers, using a cryptographically
secure process. Even slight biases in that process may be turned
into attacks on the signature schenes

The need for a cryptographically secure source of randommess proves
to be a hindrance to depl oynent of DSA and ECDSA sighature schenes in
sone architectures in which secure random nunber generation is
chal l enging, in particular, enmbedded systems such as smartcards. In
those systens, the RSA signature algorithm used as specified in
Publ i c- Key Cryptography Standards (PKCS) #1 [ RFC3447] (with "type 1"
paddi ng, not the Probabilistic Signature Schene (PSS)) and | SO 9796-2
[1SO9796-2], is often preferred, even though it is conputationally
nor e expensive, because RSA (with such paddi ng schenes) is
deterministic and thus does not require a source of randomess.

The randoni zed nature of DSA and ECDSA al so nmakes i npl enentations
harder to test. Automatic tests cannot reliably detect whether the

i mpl enent ati on uses a source of randomess of hi gh enough quality.
This makes the inplenmentati on process nore vul nerable to catastrophic
failures, often discovered after the system has been depl oyed and
successful ly attacked.

It is possible to turn DSA and ECDSA into deterministic schenes by
using a deternministic process for generating the "randont val ue k
That process nmust fulfill some cryptographic characteristics in order
to maintain the properties of verifiability and unforgeability
expected from si gnature schenes; nanely, for whoever does not know
the signature private key, the mapping frominput nessages to the
correspondi ng k val ues nust be conputationally indistinguishable from
what a randomly and uniformy chosen function (fromthe set of
messages to the set of possible k values) would return
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Thi s docunent describes such a procedure. It has the follow ng
features

0 Produced signatures remain fully conpatible with plain DSA and
ECDSA. Entities that verify the signatures need not be changed or
even be aware of the process used to generate k

0 Key pair generation is not altered. Existing private keys can be
used with determ nistic DSA and ECDSA.

0 Using determnistic DSA and ECDSA inplies no extra storage
requi renent of any secret or public val ue.

0 Deterministic DSA and ECDSA can be applied over the same inputs as
pl ai n DSA and ECDSA, nanely a hash val ue conmputed over the nessage
that is to be signed, with a cryptographically secure hash
function.

Sonme relatively arbitrary choices were taken in the definition of
deterministic (EC)DSA as specified in this docunent; this was done in
order to nake it as universally applicable as possible, so as to
mexi m ze useful ness of included test vectors. See Section 3.6 for a
di scussi on of sone possible variants.

It shall be noted that key pair generation still requires a source of
randommess. | n enbedded systens where quality of randommess is an
issue, it can often be arranged that key pair generation occurs
within more controlled conditions (e.g., during a special smartcard
initialization procedure or under physical control of sworn agents)
or the key might even be generated el sewhere and inported in the
device. Determnistic DSA and ECDSA only deal with the need for
randommess at the tinme of signature generation

1.1. Requirenments Language
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [ RFC2119].

2. DSA and ECDSA Not ati ons
In this section, we succinctly describe DSA and ECDSA and defi ne our

notations. The conplete specifications for DSA and ECDSA can be
found in [FIPS-186-4] and [ X9.62], respectively.
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2.1. Key Paraneters

DSA and ECDSA work over a large group of prine size, in which the
group operation is easy to conpute, but the discrete logarithmis
conmputationally infeasible with existing and foreseeabl e technol ogy.
The definition of the group is called the "key paraneters". Key
paraneters nmay be shared between different key pairs with no il
effect on security; this is the usual case with ECDSA in particul ar

DSA uses the follow ng key paraneters:
p a large prinme nunber (at |east 1024 bits)

o} a sufficiently large prinme nunmber (at least 160 bits) that is
al so a divisor of p-1

g a generator for the nmultiplicative subgroup of order q of
i ntegers nmodul o p

The group on which DSA will be conputed consists of the val ues
"g”j nod p', where ' denotes exponentiation and j ranges fromO to
g-1 (inclusive). The size of the group is q.

ECDSA uses the followi ng key paraneters:
E an elliptic curve, defined over a given finite field

o} a sufficiently large prime nunber (at |east 160 bits) that is a
di visor of the curve order

G a point of E, of order q

The group on which ECDSA will be conputed consists of the curve
points jG (multiplication of point G by integer j) where j ranges
from0O to g-1. Gis such that qG = 0 (the "point at infinity" on the
curve E). The size of the group is gq. Note that these notations
slightly differ fromthose described in [X9.62]; we use themin order
to match those used for DSA

2.2. Key Pairs
A DSA or ECDSA private key is an integer x taken nodulo gq. The

rel evant standards prescribe that x shall not be 0; hence, x is an
integer in the range [1, g-1].
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A DSA or ECDSA public key is conputed fromthe private key x and the
key paraneters

0 For DSA, the public key is the integer: y = g*"x nod p
0 For ECDSA, the public key is the curve point: U= xG
2.3. Integer Conversions

Let glen be the binary length of gq. qglen is the smallest integer
such that g is less than 2*qlen. This is the size of the binary
representation of g without a sign bit (note that g, being a big
prinme, is odd, thus avoiding any anbiguity about the length of any

i nteger equal to a power of 2). W define five conversion functions,
which work on strings of bits, octets, and integers nodulo q. qlen
is the main parameter for these conversions.

In the follow ng subsections, we use two other |engths, called blen
and rlen. rlen is equal to glen, rounded up to the next nultiple of
8 (if glenis already a multiple of 8, then rlen equals qglen
otherwise, rlen is slightly larger, up to gqlen+7). Note that rlenis
unrelated to the value r, the first half of a generated signature.
blen is the length (in bits) of an input sequence of bits and may
vary between calls. blen may be smaller than, equal to, or |arger
than gl en.

2.3.1. Bits and Cctets

Formal ly, all operations are defined on sequences of bits. A
sequence is ordered; the first bit is said to be leftnost, while the
last bit is rightnost.

On nost software systens, bits are grouped into octets (sequences of
eight bits). Binary data, e.g., the output of a hash function, is
avai l abl e as a sequence of octets. Wenever applicable, we consider
that bits within an octet are ordered fromnost significant to | east
significant: the first (leftnost) bit within an octet has nunerica
value 128, while the last (rightnost) has nunerical value 1

2.3.2. Bit String to Integer
The bits2int transformtakes as input a sequence of blen bits and

out puts a non-negative integer that is less than 2*qlen. It consists
of the follow ng steps:
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1. The sequence is first truncated or expanded to |length glen

* if glen < blen, then the glen leftnost bits are kept, and
subsequent bits are di scarded;

* otherwise, glen-blen bits (of value zero) are added to the
| eft of the sequence (i.e., before the input bits in the
sequence order).

2. The resulting sequence is then converted to an integer val ue
usi ng the big-endian convention: if input bits are called b_0
(leftnost) to b_(qglen-1) (rightnost), then the resulting val ue
is:

b 0*2~(qglen-1) + b_1*2"(qglen-2) + ... + b _(qglen-1)*270

The bits2int transformcan al so be described in the foll ow ng way:
the input bit sequence (of length blen) is transforned into an

i nteger using the big-endian convention. Then, if blen is greater
than glen, the resulting integer is divided by two to the power

bl en-gl en (Euclidian division: the remainder is discarded); in nmany
software inplenentations of arithnmetics on big integers, that
division is equivalent to a "right shift" by blen-qlen bits.

2.3.3. Integer to Cctet String

An integer value x less than q (and, in particular, a value that has
been taken nodul o q) can be converted into a sequence of rlen bits,

where rlen = 8*ceil (gqlen/8). This is the sequence of bits obtained

by bi g-endian encoding. In other words, the sequence bits x_i (for

ranging fromO to rlen-1) are such that:

X = x_0*2"(rlen-1) + x_1*27(rlen-2) + ... + x_(rlen-1)
We call this transformint2octets. Since rlenis a multiple of 8
(the snmallest multiple of 8 that is not snaller than glen), then the
resulting sequence of bits is also a sequence of octets, hence the
namne.
2.3.4. Bit String to Cctet String

The bits2octets transformtakes as input a sequence of blen bits and
outputs a sequence of rlen bits. |t consists of the follow ng steps:

1. The input sequence b is converted into an integer value z1
t hrough the bits2int transform

z1 = bits2int(b)
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2.

2.

2. z1 is reduced nodulo q, yielding z2 (an integer between 0 and
g-1, inclusive):

z2 = z1 nod q
Note that since z1 is |less than 2*qlen, that nodul ar reduction
can be inplenented with a sinple conditional subtraction
z2 = z1-q if that value is non-negative; otherw se, z2 = z1

3. z2 is transformed into a sequence of octets (a sequence of rlen
bits) by applying int2octets.

3.5. Usage

It is worth noting that int2octets is not the reverse of bits2int,
even for input sequences of length glen: int2octets will add sone
bits on the left, while bits2int will discard sone bits on the right.
int2octets is the reverse of bits2int only when glen is a nultiple of
8 and bit sequences already have I ength gl en

bits2int is used during signature generation and verification in
standard DSA and ECDSA to transform a hash val ue (computed over the

i nput nessage) into an integer nodulo q. That is, the integer
obt ai ned through bits2int is further reduced nodul o g; since that
integer is less than 2*qglen, that reduction can be perforned with at
nost one subtraction.

int2octets is defined under the nanme "Integer-to-CctetString” in
Section 2.3.7 of SEC 1 [SEC1]. It is used in the specification of
the encodi ng of an ECDSA private key (x) within an ASN. 1-based
structure.

bits2octets is not used in standard DSA or ECDSA. We will use it in
the specification of determnistic (EC)DSA.

4. Signature Generation

Si gnature generation uses a cryptographi c hash function H and an

i nput nmessage m The nmessage is first processed by H vyielding the
value Hm, which is a sequence of bits of Iength hlen. Normally, H
is chosen such that its output Iength hlen is roughly equal to glen
since the overall security of the signature schene will depend on the
smal | est of hlen and gl en; however, the rel evant standards support

all conbinations of hlen and gl en
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The following steps are then applied:

1

Por ni n

H'm is transforned into an integer nmodul o q using the bits2int
transform and an extra nodul ar reduction:

h = bits2int(HmM) nod q

As was noted in the description of bits2octets, the extra nodul ar
reduction is no nore than a conditional subtraction

A random val ue nodul o q, dubbed k, is generated. That val ue
shall not be 0; hence, it lies in the [1, g-1] range. Most of
the renai nder of this docunent will revolve around the process
used to generate k. In plain DSA or ECDSA, k should be sel ected
t hrough a random sel ecti on that chooses a val ue anong the g-1
possi bl e values with uniform probability.

A value r (nodulo q) is conputed fromk and the key paraneters
*  For DSA:
r = g*k nmod p nod q

(The exponentiation is performed nodul o p, yielding a nunber
between 0 and p-1, which is then further reduced nodulo q.)

* For ECDSA: the point kGis conputed; its X coordinate (a
menber of the field over which Eis defined) is converted to
an integer, which is reduced nodulo q, yielding r.

If r turns out to be zero, a new k should be selected and r
conmputed again (this is an utterly inprobable occurrence).

The value s (nodulo ) is conputed:

s = (h+x*r)/k nod q
The pair (r, s) is the signature. How a signature is to be
encoded is not covered by the DSA and ECDSA st andards thensel ves;

a conmon way is to use a DER-encoded ASN. 1 structure (a SEQUENCE
of two INTEGERs, for r and s, in that order).
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3. Determnistic DSA and ECDSA
Deternministic (EC)DSA is the process of generating an (EC)DSA
signature over an input message m by using the standard (EC)DSA
si gnature generation process (discussed in the previous section),
except that the value k, instead of being randomy generated, is
obt ai ned through the process described in this section
We use the notations described in Section 2.

3.1. Building Bl ocks

3.1.1. HVAC
HVAC [ RFC2104] is a construction of a Message Authentication Code
using a hash function and a secret key. Here, we use HVAC with the

same hash function H as the one used to process the input nessage
prior to signature generation or verification

We denote the process of applying HVAC with key K over data V by:
HVAC _K( V)

which returns a sequence of bits of length hlen (the output |ength of
t he underlying hash function H).

3.2. Ceneration of k
G ven the input message m the follow ng process is applied:
a. Process mthrough the hash function H, vyielding:
hl = Hm
(hl is a sequence of hlen bits).
b. Set:
V = 0x01 0x01 0x01 ... 0xO01
such that the length of V, in bits, is equal to 8*ceil (hlen/8).
For instance, on an octet-based system if His SHA-256, then V
is set to a sequence of 32 octets of value 1. Note that in this
step and all subsequent steps, we use the sanme H function as the

one used in step 'a’ to process the input nmessage; this choice
will be discussed in nore detail in Section 3.6.
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Por ni n

Set :

K = 0x00 0x00 0x00 ... 0x00
such that the length of K in bits, is equal to 8*ceil (hlen/8).
Set :

K = HVAC K(V || Ox00 || int2octets(x) || bits2octets(hl))

where ||’ denotes concatenation. |In other words, we conpute
HVAC wi th key K, over the concatenation of the following, in
order: the current value of V, a sequence of eight bits of value
0, the encoding of the (EC)DSA private key x, and the hashed
nmessage (possibly truncated and extended as specified by the
bits2octets transforn). The HVAC result is the new value of K
Note that the private key x is in the [1, g-1] range, hence a
proper input for int2octets, yielding rlen bits of output, i.e.
an integral nunber of octets (rlenis a nultiple of 8).

Set :

V = HVAC K(V)

Set :

K = HWAC K(V || Ox01 || int2octets(x) || bits2octets(hl))
Note that the "internal octet™ is OxOl this tine.
Set :
V = HVAC K(V)
Cpply the following algorithmuntil a proper value is found for
1. Set T to the enpty sequence. The length of T (in bits) is
denoted tlen; thus, at that point, tlen = 0.

2. Wile tlen < glen, do the foll ow ng:

\Y

HVAC_K( V)

T

TI|] V
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3. Conpute:
k = bits2int(T)

If that value of k is within the [1,g-1] range, and is
suitable for DSA or ECDSA (i.e., it results in an r val ue
that is not 0; see Section 3.4), then the generation of k is
finished. The obtained value of k is used in DSA or ECDSA.
O herwi se, conpute:

K

HVAC K(V || 0x00)

V = HVAC K(V)

and loop (try to generate a new T, and so on).

Pl ease note that when k is generated from T, the result of bits2int

is conpared to g, not reduced nodulo g. |If the value is not between
1 and g-1, the process loops. Perfornming a sinple nodular reduction
woul d i nduce biases that would be detrinmental to signature security.

3.3. Alternate Description of the Generation of k

The process described in the previous section is actually derived
fromthe "HVAC DRBG' pseudorandom nunber generator, described in
[ SP800- 90A] and Annex D of [X9.62]. Using the termi nology from

[ SP800-90A], the generation of k can be described as such

a. Instantiate HVAC DRBG usi ng HVAC paraneterized with the same hash
function H as the one used for processing the nessage that is to
be signed. Instantiation paraneters are:

requested_i nstantiati on_security_strength
Set this paraneter to any val ue that the HVAC DRBG
i npl ementation will accept, when using H as base hash
functi on.

prediction_resistance_fl ag
Set this paraneter to "fal se"

personal i zati on_string
Set this paraneter to "Null" (the enpty bit sequence).

entropy_i nput
Use int2octets(x) as entropy string.

nonce
Use bits2octets(H(n)) as nonce.
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Note that the |last two paraneters are not paraneters to the

HVAC DRBG i nstantiation function per se; instead, those val ues
are requested fromthe internal Get_entropy_input function during
instantiation. For determnistic (EC)DSA we want HVAC DRBG to
run with the entropy string and nonce that we specify, wthout
accessi ng an actual entropy source.

b. Generate a candidate value for k by requesting glen bits from
HVAC_DRBG and converting the resulting bits into an integer with
the bits2int transform Repeat this step until a value is
obt ai ned, which is non-zero, less than g, and suitable for
(EC) DSA (see Section 3.4).

Note that we instantiate a new HVAC DRBG i nstance for each signature
generation process. There is no "personalization string" and no
"additional input" when generating bits. The reseed function of
HVAC DRBG i s never invoked, neither externally nor as a consequence
of the internal HVAC DRBG processing

As shown above, we use the encoding of the private key as "entropy
string" and the hashed message (truncated and expanded by

bi t s2octets) as "nonce". In HVAC DRBG the entropy string and nonce
are sinply concatenated into the initial seed; hence, the split

bet ween "entropy" and "nonce" is quite arbitrary. Using glen bits
for each ought to be conpatible with nost HVAC DRBG i npl enent ati on

i nput requiremnents.

3.4. Usage Notes

Wth DSA or ECDSA, the value k is used to conpute the first half of
the signature, dubbed r (see Section 2.4). The DSA and ECDSA
standards nandate that, if r is zero, then a new k should be
selected. |In that situation, this docunment specifies that the val ue
k is "unsuitable", and the generation process shall keep on | ooping.

This occurrence is utterly inprobable. Actually, it would require
consi derabl e conputational effort (simlar to breaking prei nage

resi stance of the hash function) to find a private key and a nessage
that lead to a zero value for r; hitting such a case by pure chance
is thus deened inplausi ble, and an attacker cannot force it wth
carefully crafted nmessages. |In practice, such a code path will not
be triggered and thus can be inplenented with little optim zation

3.5. Rationale
The process described in the previous sections mnics the "Approved"

generation process of k described in Annex D of [X9.62], with the
"HVAC DRBG' pseudorandom nunber generator. The nmain difference is
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that we use the concatenation of the private key x and the hashed
message H(n) as the pseudorandom nunmber generator (PRNG seed. |If
using a "security level" of n bits, then HVAC DRBG should be used
with seed entropy at |east n+64 bits; however, the key x should al so
have been generated with that nmuch entropy, and the length of x is
glen, which is at least equal to 2*n and thus |l arger than n+64 (DSA
and ECDSA, as specified by the standards, require gqlen >= 160). It
can then be argued that deterministic ECDSA fulfills the entropy
requi renents of Annex D of [X9.62].

We use bits2octets(H(m)) instead of H(m in order to ease

integration. |ndeed, many existing signature systens offload the
message hashing; the signature engine (which has access to the
private key) receives only Hmj. In sone applications, where data

bandwi dth is constrained, only the first glen bits of H(n) are
transferred to the signature engine, on the basis that the bits2int
transformw || ignore subsequent bits anyway. Possibly, in sone
systens, the truncated H(n) could be externally reduced nodul o q,
since that is the first thing that (EC)DSA perforns on the hashed
nmessage. Wth the definition of bits2octets, deterministic (EC)DSA
can be applied with the sane input.

3.6. Variants

Many parts of the specification of deternmnistic (EC)DSA are quite

arbitrary. It is possible to define variants that are NOT
"determ nistic (EC)DSA" but that nmay nonet hel ess be useful in sone
cont exts:

0 It is possible to use Hm directly, instead of bits2octets(H(m),
as part of the HVAC input. As explained in Section 3.5, we use
bits2octets(H(m) in order to ease integration into systems that
al ready use an (EC)DSA signature engine by sending it an already-
truncated hash value. Using the whole H(m does not introduce any
vul nerability.

0 Additional data may be added to the input of HMAC, concatenated
after bits2octets(H(m):

K = HVAC K(V || Ox00 || int2octets(x) || bits2octets(hl) || k')

A use case nay be a protocol that requires a non-deternministic
signature algorithmon a systemthat does not have access to a

hi gh-qual ity random source. It suffices that the additional data
k’ is non-repeating (e.g., a signature counter or a nonotonic

cl ock) to ensure "random | ooki ng" signatures are

i ndi stinguishable, in a cryptographic way, from plain (EC)DSA
signatures. |In [SP800-90A] ternminology, k' is the "additiona
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i nput" that can be set as a paraneter when generating pseudorandom
bits. This variant can be thought of as a "strengthening" of the
randommess of the source of the additional data k’

0 Instead of using x (the private key) as input to HVAC, it is
possi ble to use additional secret data, stored along with the
private key with the sane security neasures. The entropy of that
addi tional data SHALL be at least n bits, preferably n+64 bits or
nmore, where n is the target security level. Having additiona
secret data may help in formally proving the security of
derandomi zation, but it inplies an extra storage cost and
i nconpatibility with already-generated (EC)DSA private keys

o Simlarly, the private key could be a value z, fromwhich both x
(the "private key" in the plain (EC)DSA sense) and anot her val ue
X', to be used as input to HWAC in the generation of k, would be

derived through a suitable Pseudorandom Function (PRF) (such as

HVAC DRBG). This would keep private key storage requirenents to a

m ni mum while providing a nore easily proven security, but it

woul d i nmpact private key generation and woul d not be conpati bl e

wi th al ready-generated key pairs.

o In this docunment, we use the sane hash function H for processing
the i nput nessage and as a paraneter to HWAC. Two distinct hash
functions could be used, provided that both are adequately secure.
The overall security will be linited by the weaker of the two hash
functions, i.e., the one with the smaller output. Using a
specific, constant hash function for HVAC may be useful for
constrained inplenentations that accept externally hashed
nmessages, regardl ess of what hash function was used for that, but
have resources for inplenenting only one hash function for HWVAC

The mai n di sadvantage of any variant is that it ceases to be
verifiabl e against the test vectors published in this docunent.

4. Security Considerations

Proper inplenentation and usage of a cryptographic signature
algorithmrequire taking i nto account nany paraneters. In
particul ar, private key generation, storage, access control, and

di sposal are sensitive operations, which this docunment does not
address in any way. Deternministic (EC)DSA shows how to achieve the
security characteristics of a standard DSA or ECDSA signature schene
whil e removing the need for a source of strong randomess, or even
any source of randommess, during signature generation.
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Private key generation, however, absolutely requires such a strongly
random source. In situations where determnistic (EC)DSA is to be
used due to the lack of an appropriate source of randommess, one nust
assune that the private key has been generated externally and
inmported into the signature generation systemor was generated in a
cont ext where randommess was avail able. For instance, one can

i magi ne a snmartcard that generates its private key while still in the
factory under controlled environnental conditions, but for which
random dat a generation cannot be guaranteed once deployed in the
field, when physically in the hands of potential attackers.

Bot h renmoval of the random source requirenent and the ability to test
an inplenentation agai nst test vectors enhance security of DSA and
ECDSA signer inplenmentations, in that they help avoid hard-to-test
failure conditions. Deterninistic signature schenes nmay also help in
other situations, e.g., to avoid spurious duplicates, when the same
data elenent is signed several tinmes with the sane key: with a
determ nistic signature schene, the sane signature is generated every
time, naking duplicate detection nmuch easi er

Conversely, lack of randomi zation nay have adverse effects in sone
advanced protocols, e.g., related to anonymity in some voting
schenes. As a rule of thunb, determ nistic DSA or ECDSA can be used
in lieu of the genuine DSA or ECDSA, with no additional security

i ssues, if the overall protocol would tolerate another deterninistic
signature schene, in particular RSA as specified in PKCS #1 [ RFC3447]
(with "type 1" padding, not PSS) or |SO 9796-2 [ISO 9796-2]. The
list of protocols in which determnistic DSA or ECDSA is appropriate
i ncludes Transport Layer Security (TLS) [RFC5246], the Secure SHel
(SSH) Protocol [RFC4251], Cryptographic Message Syntax (CWVS)

[ RFC5652] and derivatives, X 509 public key infrastructures

[ RFC5280], and nany others.

The construction described in this document is known as a

"derandom zation". This has been proposed for various signature
schenes. Security relies on whether the generation of k is

i ndi stinguishable fromthe output of a randomoracle. Roughly
speaki ng, HVAC DRBG is secure in that role as Iong as HVAC behaves as
a PRF (Pseudorandom Function). For details on the security of HWVAC
and HVAC DRBG, please refer to [H2008] and [B2006]. For a nore
formal treatment of derandoni zation, see [LN2009].

One remaining issue with deternministic (EC)DSA, as presented in this
document, is the "double use" of the private key x, both as the
private key in the signature generation algorithmitself and as input
to the HVAC DRBG based pseudorandom oracle for producing the k val ue
This requires HVAC DRBG to keep on being a random oracl e, even when
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the public key (which is conputed fromx) is also known. G ven the
| ack of comon structure between HVAC and discrete |logarithns, this
seens a reasonabl e assunption.

Si de-channel attacks are an inportant considerati on whenever an
attacker can accurately neasure aspects of an inplenentation such as
the length of tine that it takes to performa signing operation or

t he power consumed at each point of a signing operation. The
determinismof the algorithnms described in this note may be useful to
an attacker in sone fornms of side-channel attacks, so inplenentations
SHOULD use defensive neasures to avoid | eaking the private key

t hrough a si de channel

5. Intellectual Property Status

To the best of our know edge, deterministic (EC)DSA is not covered by
any active patent. The paper [BDLSY2011l] points to two independent
publications of the idea of derandom zation by Barwood and W gl ey,
both in early 1997, and also to a patent application by Naccache,

M Rai hi, and Levy-dit-Vehel a few nonths later [NWML1997], but the
application was withdrawn in 2003. W are not aware of any other
patent on the subject.
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Appendi x A, Exanpl es
A 1. Detail ed Exanpl e

We detail here the internediate val ues obtained during the generation
of k on an exanple nessage and key. W use a binary curve because
that specific curve is standard and has a group order |length (gl en)
that is not a nultiple of 8; this illustrates the fine details of how
conversions are perforned between integers and bit sequences.

A 1.1. Key Pair

We consi der ECDSA on the curve K-163 described in [FIPS-186-4] (al so
known as "ansi x9t163k1" in [X9.62]). The curve is defined over a
field G-(27163): field elenents are encoded into 163-bit strings.
The order of the conventional base point is the prinme val ue:

g = 0x4000000000000000000020108A2E0CCODO9F8ASEF
whi ch has length glen = 163 bits.
Qur private key is:

X = 0x09A4D6792295A7F730FC3F2B49CBCOF62E862272F
The corresponding public key is the curve point U= xG This point
has two coordi nates, which are elenments of the field G-(27163).
These el enents can be converted to integers using the procedure
described in Section A 5.6 of [X9.62], yielding the two public point
coordi nat es

Ux Ox79AEEO090DBO5EC252D5CB4452F356BE198A4FFO6F

Uy
A 1.2. Generation of k

0x782E29634DDCOA31EF40386E896BAA18B53AFASA3

In this exanple, we use the hash function SHA-256 [FI PS-180-4]. The
i nput nmessage is the UTF-8 encoding of the string "sanple" (6 octets,
i.e., 48 bits).
The hashed i nput nessage hl = SHA-256(n) is:
hl

AF 2B DB E1 AA 9B 6E C1 E2 AD E1 D6 94 F4 1F C7

1A 83 1D 02 68 E9 89 15 62 11 3D 8A 62 AD D1 BF

(32 octets; each octet value is listed in hexadeci mal notation).
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We convert the private key x to a sequence of octets using the
i nt2octets transform

i nt 2oct et s(x)
00 9A 4D 67 92 29 5A 7F 73 OF C3 F2 B4 9C BC OF
62 E8 62 27 2F

Not e: Al though the specific value of x would nunerically fit in 160
bits, i.e., 20 octets, we still encode x into 21 octets, because the
encoding length is driven by the length of q, which is 163 bits.

We al so truncate and/or expand the hashed nessage using bits2octets:

bi t s2oct et s(hl)
01 79 5E DF OD 54 DB 76 OF 15 6D 0D AC 04 CO 32
2B 3A 20 42 24

The steps b to g (see Section 3.2) then conpute the values for the K
and V variables. These variables are sequences of 256 bits (the hash
function output length, rounded up to a nultiple of 8). W reproduce
here t he successive val ues:

V after step b:
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

K after step c:
00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 0O

K after step d:
09 99 9A 9B FE F9 72 D3 34 69 11 88 3F AD 79 51
D2 3F 2C 8B 47 F4 20 22 2D 11 71 EE EE AC 5A B8

V after step e:
D5 F4 03 OF 75 5E E8 6A Al 0B BA 8C 09 DF 11 4F
F6 B6 11 1C 23 85 00 D1 3C 73 43 A8 0 1B EC F7

K after step f:
0C F2 FE 96
A6 8A 4F FE

61 9C 9E F5 3C B7 41 7D 49 D3 7E
D7 E6 23 E3 86 89 28 99 11 BD 57

8H

V after step g:
78 34 57 C1 CF 31 48 AB F2 A9 AE 73 ED 47 2F A9
8E D9 CD 92 5D 8E 96 4C EO 76 4D EF 3F 84 2B 9A
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In step h, we performthe final |oop. Since we use HVAC with SHA-
256, which produces 256 bits worth of output, and we need only 163
bits for T, a single HVAC i nvocation yields the following T:

T (first try)

93 05 A4 6D E7 FF 8E Bl 07 19 4D EB D3 FD 48 AA
20 D5 E7 65 6C BE OE A6 9D 2A 8D 4E 7C 67 31 4A

whi ch, when converted to an integer with bits2int, yields a first
candi date for k:

k1l = 0x4982D236F3FFC758838CA6F5E9FEA455106AF3B2B

Since that value is greater than g-1, we have to loop. This first
entails conmputing new val ues for K and V:

new K
75 CB 5C 05 B2 A7 8C 3D 81 DF 12 D7 4D 7B EO A0
E9 4A Bl 98 15 78 1D 4D 8E 29 02 A7 9D OA 66 99
new V
DC B9 CA 12 61 07 A9 C2 7C E7 7B A5 8E A8 71 C8
C9 12 D8 35 EA DD C3 05 F2 44 5D 88 F6 6C 4C 43
then a new T:

T (second try)

C7 0C 78 60 8A 3B 5B E9 28 9B E9 OE F6 E8 1A 9E

2C 15 16 D5 75 1D 2F 75 F5 00 33 E4 5F 73 BD EB
and a new candi date for k

k2 = 0x63863C30451DADF4944DF4877B740D4F160A8B6AB
Since k2 is also greater than g-1, we |oop again:
new K (2)

OA 5A 64 B9 9C 05 95 20 10 36 8
A7 88 EB 3B CF 69 BA 66 A5 BB 0

6 CB 6F 36 BC FC
8 0B 05 93 BA 53
new V (2)
0B 3B 19 68 11 Bl 9F 6C 6F 72 9C 43 F3 5B CF 0D
FD 72 5F 17 CA 34 30 E8 72 14 53 E5 55 50 Al 8F

T (third try)

47 5E 80 E9 92 14 05 67 FC C3 A5 0D AB 90 FE 84
BC D7 BB 03 63 8E 9C 46 56 A0 6F 37 F6 50 8A 7C
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and we finally get an acceptabl e value for k:
k = 0x23AF4074C90A02B3FE61D286D5C87F425E6BDD31B
A.1.3. Signature

Wth our private key and the value of k that we just generated, we
can now conmpute the signature using the standard ECDSA nechani sns.

First, the point kGis conputed, and the X coordi nate of that point
is converted to an integer and then reduced nodulo q, yielding the
first signature half:

r = 0x113A63990598A3828CA07COF4D2438D990DFO9AT7F

whi ch we use, together with x (the private key), k (which we conputed
above), and h = bits2int(hl), to conpute the second signature half:

s = 0x1313A2E03F5412DDB296A22E2CA55335545672D9F

An ECDSA signature is a pair of integers. |In many protocols that
require a signature to be a sequence of bits (or octets), it is
customary to encode the signature as an ASN. 1 SEQUENCE of two | NTEGER
values, with DER rules. This results in the foll ow ng 48-octet

si gnature:

30 2E 02 15 01 13 A6 39 90 59 8A 38 28 ¢4 07 @0

F4 D2 43 8D 99 0D F9 9A 7F 02 15 01 31 3A 2E 03
F5 41 2D DB 29 6A 22 E2 C4 55 33 55 45 67 2D 9F
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A 2. Test Vectors

In the followi ng sections, we give test vectors for various key sizes
and hash functions, both for DSA and ECDSA.

Al'l nunbers are given in hexadecimal notation. Each signature
consists of two integers, named r and s; many inplenentations wll
encode those integers into a single ASN.1 structure or with sone
ot her encodi ng convention, which is outside of the scope of this
docunent. We also show the k value used internally.

For every key, we list ten signatures, corresponding to two distinct
i nput nessages, and five of the SHA [ FI PS-180-4] functions: SHA-1
SHA- 224, SHA- 256, SHA-384, and SHA-512. The two input nessages are
the UTF-8 encoding of the strings "sanple" and "test" (w thout the
quotes), of length 48 and 32 bits, respectively.

The ECDSA exanpl es use the standard curves described in [FIPS-186-4].
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A 2.1,
Key
key

p:

DSA, 1024 Bits
pair:
paraneters

86F5CA03DCFEB225063FF830A0C769B9DDOD6153ADO1D7CE27F787CA3278B447
E6533B86B18BEDGES8A48B784A14C252C5BEODBF60B86D6385BD2F12FB763ED88
73ABFD3F5BA2EO0A8COAS9082EACO56935E529DAF7C610467899C7 7 ADEDFC846C
881870B7B19B2B58F9BE0521A17002E3BDD6B86685EE90B3D9A1B02B782B1779

996F967F6CBE388D9E28D01E205FBA957A5698B1

07BOF92546150B62514BB771E2A0COCE387F03BDA6C56B505209FF25FD3C133D
89BBCDO7E904E09114D9A7 DEFDEADFCO078EAS544D2E401AEECCA0BBOFBBF78FD
87995A10A1C27CB7789B594BA7TEFB5C4326 A9FES9A070E136DB77175464ADCA4
17BESDCE2F40D10A46A3A3943F26 AB7FDOCO398FF8C76EEO0AS6826 A8A88F1DBD

private key:

X =

411602CB19A6CCC34494D79D98EF1E7EDSAF25F7

public key:

y:

5DF5E01DED31D0297E274E1691C192FES5868FEFOE19A84776454B100CF16F653
92195A38B90523E2542EE61871C0440CB87C322FCAB4AD2ECSELE7EC766E1BESD
4CE935437DC11C3C8FD426338933EBFE739CB3465F4D3668C5E473508253B1E6
82F65CBDCAFAE93C2EA212390E54905A86E2223170B44EAA7 DASDDOFFCFB7F3B

Si gnat ures

Wth SHA-1, nessage = "sanple"

k
r
s

7BDB6BOFF756E1BB5D53583EF979082F9AD5BD5B
2E1A0C2562B2912CAAF89186FBOF42001585DA55
29EFB6BOAFF2D7A68EB70CA313022253B9A88DF5

Wth SHA-224, nessage = "sanpl e"

k
r
s

562097006782D60C3037BA7BE104774344687649
4BC3B686AEA70145856814A6F1BB53346F02101E
410697B92295D994D21EDD2F4ADA85566F6F94C1

Wth SHA- 256, nessage = "sanpl e"

k
r
S

Por ni n

519BA0546D0C39202A7D34D7 DFASE760B318BCFB
81F2F5850BE5BC123C43F71A3033E9384611C545
4CDD914B65EB6C66 ABAAAD27299BEE6BO35SF5E89
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Wth SHA-384, nessage = "sanple":

k = 95897CD7BBB944AA932DBC579C1C09EB6FCFC595
r 07F2108557EEOQE3921BC1774F1CA9B410B4CEG5A
s 54DF70456 C86FACLOFAB47C1949AB83F2C6F7595

Wth SHA-512, nessage = "sanple":

k = 09ECE7CA27DOF5A4DDAES556CO9DF1D21D28104F8B
r 16C3491F9B8C3FBBDD5E7A7B667057F0DSEESELB
s 02C36A127A7B89EDBB72E4FFBC7 1DABC7D4FC69C

Wth SHA-1, nmessage = "test":

k = 5C842DF4F9E344EE09F056838B42C7A17F4A6433
r 42AB2052FD43E123F0607F115052A67DCDIC5C7 7
S 183916B0230D45B9931491D4C6BOBD2FB4AAF0O88

Wth SHA-224, nessage = "test":

k = 4598B8EFC1A53BC8AECD58D1ABBBOCOC71E67297
r 6868E9964E36C1689F6037F91F28D5F2C30610F2
s = 49CEC3ACDC83018C5BD2674ECAAD35B8CD22940F

Wth SHA- 256, nessage = "test":

k = 5A67592E8128E03A417B0484410FB72C0B630ELA
r 22518C127299B0OF6FDC9872B282B9E70D0790812
s 6837EC18F150D55DE95B5E29BE7AFSD01E4FELG0

Wth SHA- 384, nessage = "test":

k = 220156B761F6CASE6CIF1B9CFIC24BE25F98CD89
r 854CF929B58D73C3CBFDC421E8D5430CD6 DBSEG6
s 91DOEOF53E22F898D158380676A871A157CDA622

Wth SHA-512, nessage = "test":

k 65D2C2EEB175E370F28C75BFCDC028D22C7DBESC
r 8EA47EA75BABAC6F2D821DA3BD212D11A3DEBIAQ
s 7C670C7AD72B6C050C109E1790008097125433E8
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A 2.

Por

2. DSA, 2048 Bits
Key pair:
key parameters

p = 9DB6FB5951B66BB6FE1E140F1D2CES5502374161FD6538DF1648218642F0B5C48
C8F7A41AADFA187324B87674FA1822B00F1ECF8136943D7C55757264E5A1A44F
FE012E9936EO00CID3E9310B01C7D179805D3058B2A9F4BB6F9716BFE6117C6B5
B3CC4D9BE341104AD4AB0AD6CI94EO005F4BO993E14F091EB51743BF33050C38DE2
35567E1B34C3D6ASCOCEAALAOF368213C3D19843D0B4B09DCBIFC72D39C8DE41
F1BF14DABB4563CA28371621CAD3324B6A2D392145BEBFAC748805236F5CA2FE
92B871CD8F9C36D3292B5509CA8CAAT7A2ADFC7BFD/77DDAGF71125A7456FEALS
3E433256A2261C6A06ED3693797E7995FADSAABBCFBE3EDA2741E375404AE25B

g = F2C3119374CE76C9356990B465374A17F23F9ED35089BD969F61C6DDE9998C1F

g = 5C7FF6BO6F8F143FE8288433493E4769CADI88ACESBE25A0E24809670716C613
D7BOCEE6932F8FAA7C44D2CB24523DAS3FBE4AF6EC3595892D1AA58C4A328A06C4
6A15662E7EAA703A1DECF8BBB2DO5DBE2EB956C142A338661D10461C0D135472
085057F3494309FFA73C611F78B32ADBB5740C361COF35BE90997DB2014E2EFS
AA61782F52ABEB8BD6432C4DD097BC5423B285DAFB60DC364E8161F4A2A35ACA
3A10B1CAD203CC76A470A33AFDCBDDO2959859ABD8B56E1725252D78EACG6ET71
BA9AE3F1DD2487199874393CD4D832186800654760E1E34C09E4AD155179F9ECO
DC4473F996BDCEG6EED1 CABED8B6F116F7ADICF505DF0F998E34AB27514BOFFEY

private key:
X = 69C7548C21D0ODFEA6B9AS51COEAD4E27C33D3B3F180316E5BCAB92C933F0E4DBC
public key:

y = 667098C654426C78D7F8201EAC6C203EF030D43605032C2F1FA937E5237DBDO4
9F34A0A2564FE126DC8B715C5141802CE0979C8246463CA0E6B6BDAA2513FAGL
1728716C2EAFD53BC95B89E69949D96512E873B9C8F8DFD499CC312882561ADE
CB31F658E934C0C197F2CAD96B05CBAD67381E7B768891E4DA3843D24 D94 CDFB
5126E9B8BF21E8358EEOEOA30EF13FD6A664CODCE3731F7FB49A4845A4FD8254
687972A2D382599C9BACAEOED7998193078913032558134976410B89D2C171D1
23AC35FD977219597AA7TD15C1A9A428E59194F75C721EBCBCFAE44696 A499AFA
74E04299F132026601638CB87AB79190D4A0986315DABEEC6561C938996BEADF

Si gnat ures

Wth SHA-1, nessage = "sanpl e"

k = 888FA6F7738A41BDC9846466ABDB8174C0338250AE50CE955CA16230F9CBD53E
r 3A1B2DBD7489D6ED7E608FD036C83AF396E290DBD602408E8677DAABDEE7445A
s D26 FCBA19FA3E3058FFC02CA1596 CDBB6EOD20CB37B06054F7E36 DEDOCDBBCCF
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Wth SHA-224, nessage = "sanple"

k BC372967702082E1AA4FCE892209F71AE4AD25A6DFD869334E6F153BD0CAD306
r DC9F4DEADASDS8FF588E98FEDOAB690FFCE858DC8C79376450EBE6B76C24537E2C
s = AB5A9C3BC7BABE286B195D5DA68616DA8D47FA0097F36DD19F517327DC848CEC

Wth SHA- 256, nessage = "sanpl e"

k = 8926A27C40484216F052F4427CFD5647338B7B3939BC6573AF4333569D597C52
r EACE8BDBBE353C432A795D9EC556C6D021F7A03F42C36E9BC87E4AC7932CC809
s 7081E175455F9247B812B74583E9E94F9EA79BD640DC962533B0680793A38D53

Wth SHA-384, nessage = "sanple”

k = C345D5AB3DA0A5BCB7ECBF8FB7A7TE96069E03B206371EF7D83E39068EC564920
r B2DA945E91858834FDI9BF616 EBACL51EDBCAB45D27D0DD4A7F6A22739F45C00B
S 19048B63D9FD6BCA1DIBAE3664E1BCBI7F7276C306130969F63F38FA8319021B

Wth SHA-512, nessage = "sanple"

k = 5A12994431785485B3F5F067221517791B85A597B7A9436995C89ED0374668FC
r 2016ED092DC5FB669BSEFB3D1F31A91EECB199879BEOCF78F02BA062CB4C942E
S DOC76F84B5F091E141572A639A4FB8C230807EEA7D55C8A154A224400AFF2351

Wth SHA-1, nmessage = "test"

k 6EEA486F9D41A037B2C640BC5645694FF8FF4B98D066A25F76BE641CCB24BA4F
r C18270A93CFC6063F57A4DFA86024F700D980E4CF4E2CB65A504397273D98EAQ
s 414F22E5F31A8B6D33295C7539C1C1BA3A6160D7 D68D50ACOD3ASBEAC2884FAA

Wth SHA-224, nessage = "test"

k = 06BD4CO5ED74719106223BE33F2D95DA6B3B541DAD7BFBD7 AC508213B6DA6670
r 272ABA31572F6CC55E30BF616B7A265312018DD325BE031BEOCC82AA17870EA3
s E9CC286A52CCE201586722D36D1E917EB96A4EBDB47932F9576AC645B3A60806

Wth SHA- 256, nessage = "test"

k 1D6CE6DDA1C5D37307839CD0O3ABOASCBB18E60D800937D67DFB4479AACSDEADY
r 8190012A1969F9957D56 FCCAAD223186F423398D58EF5B3CEFDS5A4146A4476F0
s 7452A53F7075D417B4B013B278D1BB8BBD21863F5E7B1CEE679CF2188E1ABLOE

Wth SHA-384, nessage = "test"

k = 206E61F73DBE1B2DC8BE736B22B079E9DACDI74DBO0OEEBBC5B64CAD39CFOF91C
r 239E66DDBE8SF8C230A3D071D601B6FFBDFB5901F94D444C6 AF56F732BEB954BE
s 6BD737513D5E72FE85D1C750E0F73921FE299B945AAD1 C802F15C26A43D34961

Wth SHA-512, nmessage = "test"

k = AFF1651E4CD6036D57AA8B2A05CCF1A9D5A40166340ECBBDCS55BE10B568AA0AA
r 89EC4ABB1400ECCFF8E7DIAA515CD1DE7803F2DAFF09693EE7FD1353E90A68307
S C9FOBDABCCOD880BB137A994CC7F3980CE91CCLO0FAFS529FC46565B15CEAS54EL
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A 2.3. ECDSA, 192 Bits (Prine Field)
Key pair:
curve: N ST P-192

g = FFFFFFFFFFFFFFFFFFFFFFFFOQ9DEF836146BCO9B1B4D22831
(glen = 192 bits)

private key:

X = 6FAB034934E4COFCOAE67F5B5659A9D7D1FEFD187EE09FDA
public key: U= xG

Ux = AC2C77F529F91689FEAOEASEFEC7F210D8EEAOBOEQ47EDS6
Uy = 3BC723E57670BD4887EBC732C523063D0A7C957BCO7C1CA3
Si gnat ur es

Wth SHA-1, nmessage = "sanple"

k 37D7CA00D2C7BOESE412AC03BD44BA837FDD5B28CD3B0021

r 98C6BD12B23EAFS5E2A2045132086BESEBSEBDG62 ABF6698FF
s 57A22B07DEA9530F8DEQ471B1DC6624472E8E2844BC25B64

Wth SHA-224, nessage = "sanple"

k = 4381526B3FCLE7128F202E194505592F01D5FF4C5AF01508
r A1FO0DAD97AEEC91C95585F36200C65F3C01812AA60378F5
s EO7EC1304C7C6CI9DEBBE980B9692668F81D4DE7922A0F97A

Wth SHA- 256, nessage = "sanple"

k = 32B1B6D7D42A05CB449065727A84804FB1A3E34D8F261496
r 4BOB8CE98A92866A2820E20AA6B75B56382E0F9BFD5ECB55
s CCDB006926EA9565CBADC840829D8C384E06DELF1E381B85

Wth SHA-384, nessage = "sanple"

k = 4730005C4FCB01834C063A7B6760096DBE284B8252EF4311
r DA63BFOB9ABCF948FBB1E9167F136145F7A20426DCC287D5
s C3AA2C960972BD7A2003A57E1CAC77F0578F8AE95E31ECSE

Wth SHA-512, nessage = "sanple"

k = A2AC7ABO55E4F20692D49209544C203A7D1F2C0BFBC75DB1
r 4D60C5AB1996BD848343B31C00850205E2EA6922DAC2E4B8
s 3F6E837448F027A1BF4B34E796E32A811CBB4050908D8F67
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Wth SHA-1, nmessage = "test"

k DOCFOC3D3297D3260773A1DA7418DB5537AB8DDI3DE7FA25
r 0F2141A0EBBC44D2E1AF90A50EBCFCESEL197B3B7D4DEO36D
s EB18BC9E1F3D7387500CB99CF5F7C157070A8961E38700B7

Wth SHA-224, nessage = "test"

k F5DC805F76EF851800700CCE82E7B98D8911B7D510059FBE
r 6945A1C1D1B2206B8145548F633BB61CEF04891BAF26ED34
s B7FB7FDFC339C0B9BD61A9F5A8EAF9BES8FC5CBA2CB15293

Wth SHA- 256, nessage = "test"

k = 5CACE89CF56D9E7C77C8585339B006B97B5F0680B4306C6C
r 3A718BD3B4926C3B52EE6BBEG7EF79B18CB6EB62B1ADI7 AE
S 5662E6848A4A19B1F1AE2F72ACD4B8BBESOF1EAC65D9124F

Wth SHA-384, nessage = "test":

k = S5AFEFB5D3393261B828DB6C91FBC68C230727B030C975693
r B234B60B4DB75A733E19280A7A6034BD6B1EES8AF5332367
S 7994090B2D59BB782BES7E74A44C9A1C700413F8ABEFET7A

Wth SHA-512, nessage = "test"

k 0758753A5254759C7 CFBAD2E2DOB0792EEE44136C9480527
r FE4F4AE86A58B6507946715934FE2D8FF9DI5B6B098FE739
s 74CF5605C98FBAOELEF34D4B5A1577A7DCF59457CAES2290
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A 2.4, ECDSA, 224 Bits (Prinme Field)
Key pair:
curve: NI ST P-224

g = FFFFFFFFFFFFFFFFFFFFFFFFFFFF16 A2EOB8FO3E13DD29455C5C2A3D
(glen = 224 bits)

private key:

X = F220266E1105BFE3083E03EC7A3A654651F45E37167E88600BF257C1

public key: U= xG

Ux = OOCFO8DASAD719E42707FA431292DEA11244D64FC51610D94B130D6C
Uy = EEAB6F3DEBE455E3DBF85416F7030CBD94F34F2D6F232C69F3C1385A
Si gnat ur es

Wth SHA-1, nmessage = "sanple"

k 7TEEFADD91110D8DE6C2CA470831387C50D3357F7F4D477054B8B426BC

r 22226F9DA0A96E19CAA301CESB74B115303C0F3AAFD30FC257FB57AC
s 66D1CDD83E3AF75605DD6 E2FEFF196 D30AA7 ED7 A2EDF7AF475403D69

Wth SHA-224, nessage = "sanple"

k = C1D1F2F10881088301880506805FEB4825FE09ACB6816C36991AA06D
r 1CDFE6662DDE1E4A1ECACDEDF6A1F5A2FB7FBD9145C12113E6ABFD3E
s = A6694FD7718A21053F225D3F46197CA699D45006C06F871808F43EBC

Wth SHA- 256, nessage = "sanple"

k = AD3029E0278F80643DE33917CE6908C70A8FF50A411F06E41DEDFCDC
r 61AA3DA010EBEB406C656BCA77A7A7189895E7E840CDFESFF42307BA
s BC814050DAB5D23770879494F9E0A680DCLAF7161991BDE692B10101

Wth SHA-384, nessage = "sanple"

k = 52B40F5A9D3D13040F494E83D3906C6079F29981035C7BD51E5CACA0
r 0B115E5E36FOF9EC81F1325A5952878D745E19D7 BB3EABFABA77E953
s 830F34CCDFE826CCFDC81EB4129772E20E122348A2BBD889A1B1AF1D

Wth SHA-512, nessage = "sanple"

k = 9DB103FFEDEDF9CFDBA05184F925400C1653B8501BAB89CEAOFBECL4
r 074BD1D979D5F32BF958DDC61E4FB4872ADCAFEB2256497 CDAC30397
s = AMCECA196C3D5A1FF31027B33185DC8EE43F288B21AB342E5D8EB084
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Wth SHA-1, nmessage = "test"

k 2519178F82C3FOE4F87ED5883A4E114E5B7A6E374043D8EFD329C253
r DEAA64