I nt ernet Engi neering Task Force (I ETF) T. Haynes, Ed.

Request for Comments: 7530 Primary Data
bsol etes: 3530 D. Noveck, Ed.
Cat egory: Standards Track Del |
| SSN: 2070-1721 March 2015

Network File System (NFS) Version 4 Protoco
Abstr act

The Network File System (NFS) version 4 protocol is a distributed
file systemprotocol that builds on the heritage of NFS protoco
version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier
versions, the NFS version 4 protocol supports traditional file access
while integrating support for file |Iocking and the MOUNT protocol

In addition, support for strong security (and its negotiation),
COMPOUND operations, client caching, and internationalization has
been added. O course, attention has been applied to nmaki ng NFS
version 4 operate well in an Internet environnent.

This docunent, together with the conpani on External Data
Representation (XDR) description docunent, RFC 7531, obsol etes RFC
3530 as the definition of the NFS version 4 protocol

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc7530

Haynes & Noveck St andards Track [Page 1]

RFC 7530 NFSv4 March 2015

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Tabl e of Contents

1. Introducti ON ... 8
1.1. Requirenents Languagettt 8
1.2. NFS Version 4 Goal s e e 8
1.3. Definitions in the Conpani on Docunent RFC 7531 Are

Authoritative 9
1.4. Overview of NFSv4 Features 9
1.4.1. RPC and SeCUrity i 9
1.4.2. Procedure and Qperation Structure 10
1.4.3. File System Mdel i 10
1.4.4. OPEN and CLOSEttt e 12
1.4.5. File Locking e 12
1.4.6. dient Caching and Delegation 13
1.5. General Definitions 14
1.6. Changes since RFC 3530 i, 16
1.7. Changes between RFC 3010 and RFC 3530 16

2. Protocol Data TYyPeS ...ttt 18
2.1, BasiC Data TypPesS ... 18
2.2. Structured Data Typest 21

Haynes & Noveck St andards Track [Page 2]

RFC 7530 NFSv4 March 2015
3. RPC and Security Flavor i 25
3.1. Ports and Transport s 25
3.1.1. dient Retransmission Behavior 26
3.2, Security Flavors 27
3.2.1. Security Mechanisms for NFSv4 27
3.3. Security Negotiation 28
3.3. 1. SECINFO .. 29
3.3.2. SecUrity Error 29
3.3.3. Callback RPC Authentication 29
4. Filehandl s 30
4.1. Cbtaining the First Filehandle 30
4.1.1. Root Filehandle 31
4.1.2. Public Filehandle 31
4.2. Filehandl e Types 31
4.2.1. General Properties of a Filehandle 32
4.2.2. Persistent Filehandle 32
4.2.3. Volatile Filehandle 33
4.2.4. One Method of Constructing a Volatile Filehandle ...34
4.3. dient Recovery fromFilehandle Expiration 35
B ALt bULt eSS . 35
5.1. REQURED Attributes i 37
5.2. RECOWENDED Attributes, 37
5.3. Named Attributes 37
5.4, Cassification of Attributes 39
5.5. Set-Only and Get-Only Attributes 40
5.6. REQU RED Attributes - List and Definition References 40
5.7. RECOMMENDED Attributes - List and Definition References ...41
5.8. Attribute Definitions 42
5.8.1. Definitions of REQU RED Attributes 42

5.8.2. Definitions of Uncategorized RECOMMENDED
Attributes 45
5.9. Interpreting owner and OWner_groupouvuuunnenn. 51
5.10. Character Case Attributes 53
6. Access Control Attributes 54
6. 1. Goal s ... 54
6.2. File Attributes Discussion 55
6.2.1. Attribute 12: acl 55
6.2.2. Attribute 33: node 70
6.3. Common Methods 71
6.3.1. Interpreting an ACL i 71
6.3.2. Conputing a node Attribute froman ACL 72
6.4, ReqUIremBNt S e e 73
6.4.1. Setting the node and/or ACL Attributes 74
6.4.2. Retrieving the node and/or ACL Attributes 75
6.4.3. Creating New Qbjects 75

Haynes & Noveck St andards Track [Page 3]

RFC 7530

CDCDOOE\I\I\I\I\I\I\I\IZ

@

Lovooo
oukwN

©©
© N

S
1
2
3
4,
5.
6
7
8
It
1
2
3

No

o ®

NFSv4 March 2015

Server NamBSPaACEttt e 77
Server EXPOrt S ... 77
Browsi Ng EXPOrtsS 77
Server Pseudo-File System 78
Miltiple ROOLS ... e 79
Filehandle Volatility 79
Exported ROOt e 79
Mount Point CroSSIiNgt 79
Security Policy and Nanespace Presentation 80
i -Server NamMBSPACEottt e e e 81
Location Attributes 81
File System Presence or AbSEnceouiinunnan. 81
CGetting Attributes for an Absent File System.............. 83
8.3.1. GETATTR within an Absent File System............... 83
8.3.2. READDIR and Absent File Systems 84
Uses of Location Information 84
8.4.1. File SystemReplication 85
8.4.2. File SystemMgration 86
8.4.3. Referrals 86
Location Entries and Server ldentity 87
Additional Cient-Side Considerations 88
Effecting File SystemReferrals 89
8.7.1. Referral Exanple (LOOKUP) 89
8.7.2. Referral Exanple (READDIR) 93
The Attribute fs locations 96
Locking and Share Reservations 98
Opens and Byte-Range LoOCKS i 99
9.1.1. Aient ID 99
9.1.2. Server Release of Client ID....................... 102
9.1.3. Use of Seqidso i, 103
9.1.4. Stateid Definition 104
9. 1. 5. Lock-Omer e 110
9.1.6. Use of the Stateid and Locking 110
9.1.7. Sequencing of Lock Requests 113
9.1.8. Recovery from Repl ayed Requests 114
9.1.9. Interactions of Miltiple Sequence Values 114
9.1.10. Releasing State-Ower State 115
9.1.11. Use of Open Confirmation 116
LOCK RaANgEeS 117
Upgradi ng and Downgrading Locks 117
Bl ocki Ng LOCKS 118
Lease Renewal 119
Crash ReCOVEIY i e e e e e 120
9.6.1. Cient Failure and Recovery 120
9.6.2. Server Failure and Recovery 120
9.6.3. Network Partitions and Recovery 122
Recovery from a Lock Request Tineout or Abort 130
Server Revocation of Locks 130

Haynes & Noveck St andards Track [Page 4]

RFC 7530 NFSv4 March 2015
9.9. Share Reservations 132
9.10. OPEN CLOSE Operati ONSt e 132

9.10.1. Cose and Retention of State Information 133
9.11. Open Upgrade and Downgrade, 134
9.12. Short and Long Leases, 135
9.13. docks, Propagation Delay, and Cal cul ati ng Lease

EXpirati ONn ... e 135
9.14. Mgration, Replication, and State 136

9.14.1. Mgration and State, 136

9.14.2. Replication and State 137

9.14.3. Notification of Mgrated Lease 137

9.14.4. Mgration and the lease tine Attribute 138

10. dient-Side Caching e 139
10.1. Performance Challenges for Cient-Side Caching 139
10. 2. Delegation and Callbacks 140

10.2.1. Delegation ReCOVErY iy 142
10.3. Data Caching 147

10.3.1. Data Caching and OPENs, 147

10.3.2. Data Caching and File Locking 148

10. 3.3. Data Caching and Mandatory File Locking 150

10.3.4. Data Caching and File Identity 150
10.4. Qpen Delegation 151

10.4.1. Open Del egation and Data Caching 154

10.4.2. Qpen Delegation and File Locks 155

10.4.3. Handling of CB_CGETATTR i 155

10.4.4. Recall of Open Delegation 158

10.4.5. OPEN Del egation Race with CB_ RECALL 160

10.4.6. Cients That Fail to Honor Del egation Recalls161

10.4.7. Delegation Revocation 162
10.5. Data Caching and Revocation 162

10.5. 1. Revocation Recovery for Wite Open Delegation163
10.6. Attribute Caching i 164
10. 7. Data and Metadata Caching and Menory-Mapped Files 166
10.8. Name Caching 168
10.9. Direct ory Caching 169

11, MNnor VersSioni NGt e e e e e 170
12. Internationalization 170
12,1, IntroducCti on e 170
12.2. Linmtations on Internationalization-Related
Processing in the NFSv4 Context 172
12.3. Summary of Server Behavior Types 173
12.4. String Encodi Ng e 173
12.5. Normalization 174
12. 6. Types with Processing Defined by Gther Internet Areas ...175
12.7. Errors Related to UTF-8 i 177
12.8. Servers That Accept File Conponent Nanes That
Are Not Valid UTF-8 Strings 177

Haynes & Noveck St andards Track [Page 5]

RFC 7530 NFSv4 March 2015

13.

14.

15.

16.

Error Values 178
13.1. Error Definitions e 179
13.1.1. General Errors 180
13.1.2. Filehandle Errors i 181
13.1.3. Conpound Structure Errors 183
13.1.4. File SystemErrors iy 184
13.1.5. State Managenment Errors 186
13.1.6. Security Errors ... 187
13.1.7. Name Errors 187
13.1.8. Locking Errors 188
13.1.9. ReclaimErrors e 190
13.1.10. dient Management Errorscouuuiuun.n 191
13.1.11. Attribute Handling Errors 191
13.1.12. Mscellaneous Errors 191
13.2. Qperations and Their Valid Errors 192
13.3. Call back Operations and Their Valid Errors 200
13.4. Errors and the Qperations That Use Them................. 201
NESV4 ReqUEST S ..o e 206
14.1. COVPOUND Proceduret 207
14.2. Evaluation of a COWOUND Request 207
14. 3. Synchronous Mdifying Operations 208
14. 4. Qperation Values 208
NFSVA Procedur @S e 209
15.1. Procedure 0: NULL - No Qperation 209
15. 2. Procedure 1: COVPOUND - COVPOUND Operations 210
NFSV4A Operati ONSo e 214
16.1. Operation 3: ACCESS - Check Access Rights 214
16.2. Qperation 4: CLOSE - Cose File 217
16.3. Operation 5: COMT - Commit Cached Data 218
16. 4. Qperation 6: CREATE - Create a Non-regular File Object ..221
16.5. Qperation 7: DELEGPURCE - Purge Del egati ons
Anai ting Recovery 224
16.6. Operation 8: DELEGRETURN - Return Delegation 226
16.7. Qperation 9: CGETATTR - Get Attributes 227
16.8. Operation 10: GETFH - Get Current Filehandle 229
16.9. Qperation 11: LINK - Create Link to a File 230
16.10. Operation 12: LOCK - Create Lock 232
16.11. Operation 13: LOCKT - Test for Lock 236
16.12. Operation 14: LOCKU - Unlock File 238
16.13. Operation 15: LOOKUP - Look Up Filenane 240
16.14. Operation 16: LOOKUPP - Look Up Parent Directory 242
16.15. Operation 17: NVERIFY - Verify Difference in
Attributes ... 243
16.16. Operation 18: OPEN - Open a Regular File 245

Haynes & Noveck St andards Track [Page 6]

RFC 7530 NFSv4 March 2015

16.17. Operation 19: OPENATTR - Open Naned Attribute

DireCt O Y o 256
16.18. Operation 20: OPEN_CONFIRM - ConfirmOpen 257
16.19. Operation 21: OPEN DOANGRADE - Reduce Open File
ACCBSS L 260
16. 20. Operation 22: PUTFH - Set Current Filehandle 262
16.21. Operation 23: PUTPUBFH - Set Public Filehandle 263
16.22. Operation 24: PUTROOTFH - Set Root Filehandle 265
16.23. Operation 25: READ - Read fromFile 266
16.24. Operation 26: READDIR - Read Directory 269
16. 25. QOperation 27: READLINK - Read Synbolic Link 273
16. 26. Operation 28: REMOVE - Renove File System Gbject 274
16.27. Operation 29: RENAME - Renane Directory Entry 276
16.28. Operation 30: RENEW- Renew a Lease 278
16.29. Operation 31: RESTOREFH - Restore Saved Filehandle 280
16.30. Operation 32: SAVEFH - Save Current Filehandle 281
16.31. Operation 33: SECINFO - Obtain Avail able Security 282
16.32. QOperation 34: SETATTR - Set Attributes 286
16.33. Operation 35: SETCLIENTID - Negotiate Cient ID........ 289
16.34. Operation 36: SETCLIENTID CONFIRM - Confirmddient ID..293
16.35. Qperation 37: VERIFY - Verify Sane Attributes 297
16.36. Operation 38: WRITE - Wite to File 299
16.37. Operation 39: RELEASE LOCKOMNNER - Rel ease
Lock-0Omer State 304
16.38. Operation 10044: |LLEGAL - Illegal OQperation 305
17. NFSv4 Callback Procedures, 306
17.1. Procedure 0: CB_NULL - No Operation 306
17.2. Procedure 1: CB _COVPOUND - COVPOUND QOperations 307
18. NFSv4 Callback Operations 309
18.1. Qperation 3: CB CGETATTR - Get Attributes 309
18.2. Qperation 4: CB RECALL - Recall an Open Delegation 310
18.3. Operation 10044: CB_ILLEGAL - Illegal Callback
Operati ON ... 311
19. Security Considerations 312
20. TANA Considerati ONS e 314
20.1. Nanmed Attribute Definitions 314
20.1.1. Initial Registry i, 315
20.1.2. Updating Registrations 315
20.2. Updates to Existing | ANA Registries 315
21, References 316
21.1. Normative References i, 316
21.2. Informative References i 318
ACKNOW EAgIMENt S e 322
AUt hor s’ Addr €SS ES ... i 323

Haynes & Noveck St andards Track [Page 7]

RFC 7530 NFSv4 March 2015

1. Introduction
1.1. Requirements Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119],
except where "REQUI RED' and "RECOVMENDED' are used as qualifiers to
di stinguish classes of attributes as described in Sections 1.4.3.2
and 5 of this docunent.

1.2. NFS Version 4 CGoal s

The Network File Systemversion 4 (NFSv4) protocol is a further

revi sion of the NFS protocol defined already by versions 2 [RFC1094]

and 3 [RFC1813]. It retains the essential characteristics of

previ ous versions: design for easy recovery; independent of transport
protocol s, operating systens, and file systens; sinplicity; and good
performance. The NFSv4 revision has the followi ng goals:

o |Inproved access and good performance on the |nternet.

The protocol is designed to transit firewalls easily, performwell
where latency is high and bandwidth is |low, and scale to very
| arge nunbers of clients per server

0 Strong security with negotiation built into the protocol

The protocol builds on the work of the Open Network Computing
(ONC) Renpte Procedure Call (RPC) working group in supporting the
RPCSEC GSS protocol (see both [RFC2203] and [RFC5403]).
Additionally, the NFSv4 protocol provides a mechanismto all ow
clients and servers the ability to negotiate security and require
clients and servers to support a mininmal set of security schenes

0 Good cross-platforminteroperability.
The protocol features a file system nodel that provides a useful
conmon set of features that does not unduly favor one file system
or operating system over anot her.

o0 Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conprom se backward conpatibility.

Haynes & Noveck St andards Track [Page 8]

RFC 7530 NFSv4 March 2015

This docunent, together with the conpani on External Data
Representati on (XDR) description docunent [RFC7531], obsol etes

[RFC3530] as the authoritative docunent describing NFSv4. 1t does
not introduce any over-the-wire protocol changes, in the sense that
previously valid requests remain valid.

1.3. Definitions in the Conpani on Docunent RFC 7531 Are Authoritative

The "Network File System (NFS) Version 4 External Data Representation
Standard (XDR) Description" [RFC7531] contains the definitions in XDR
description | anguage of the constructs used by the protocol. Inside
this docunent, several of the constructs are reproduced for purposes
of explanation. The reader is warned of the possibility of errors in
the reproduced constructs outside of [RFC7531]. For any part of the
docunent that is inconsistent with [RFC7531], [RFC7531] is to be

consi dered authoritative.

1.4. Overview of NFSv4 Features

To provide a reasonable context for the reader, the major features of
the NFSv4 protocol will be reviewed in brief. This is done to
provi de an appropriate context for both the reader who is fanili ar
with the previous versions of the NFS protocol and the reader who is
new to the NFS protocols. For the reader new to the NFS protocols,
sonme fundamental know edge is still expected. The reader should be
famliar with the XDR and RPC protocols as described in [RFC4506] and
[RFC5531]. A basic know edge of file systens and distributed file
systens is expected as well

1.4.1. RPC and Security

As with previous versions of NFS, the XDR and RPC nechani sms used for
the NFSv4 protocol are those defined in [RFC4506] and [RFC5531]. To
nmeet end-to-end security requirenments, the RPCSEC GSS franework (both
version 1 in [RFC2203] and version 2 in [RFC5403]) will be used to
extend the basic RPC security. Wth the use of RPCSEC GSS, various
mechani snms can be provided to offer authentication, integrity, and
privacy to the NFSv4 protocol. Kerberos V5 will be used as described
in [RFC4121] to provide one security framework. Wth the use of
RPCSEC GSS, other nechani sns nmay al so be specified and used for NFSv4
security.

To enabl e in-band security negotiation, the NFSv4 protocol has added
a new operation that provides the client with a method of querying
the server about its policies regarding which security nmechanisns
must be used for access to the server's file systemresources. Wth
this, the client can securely match the security mechani smthat neets
the policies specified at both the client and server

Haynes & Noveck St andards Track [Page 9]

RFC 7530 NFSv4 March 2015

1.4.2. Procedure and Operation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COWOUND procedure. For the
NFSv4 protocol, there are two RPC procedures: NULL and COMPOUND. The
COVMPOUND procedure is defined in terns of operations, and these
operations correspond nore closely to the traditional NFS procedures.

Wth the use of the COVWPOUND procedure, the client is able to build
sinmpl e or conplex requests. These COVWOUND requests allow for a
reduction in the nunber of RPCs needed for logical file system
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOOKUP, OPEN, and READ operations in a single COVPOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nodel used for COWOUND is very sinple. There is no logical OR
or ANDi ng of operations. The operations conbined within a COVMPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of al
eval uated operations are returned to the client.

The NFSv4 protocol continues to have the client refer to a file or
directory at the server by a "filehandle". The COVWOUND procedure
has a nethod of passing a filehandle fromone operation to another

wi thin the sequence of operations. There is a concept of a current
filehandl e and a saved fil ehandle. Most operations use the current
filehandle as the file systemobject to operate upon. The saved
filehandl e is used as tenporary filehandle storage within a COVOUND
procedure as well as an additional operand for certain operations.

1.4.3. File System Mdel

The general file system nodel used for the NFSv4 protocol is the same
as previous versions. The server file systemis hierarchical, with
the regular files contained within being treated as opaque byte
streams. In a slight departure, file and directory nanes are encoded
with UTF-8 to deal with the basics of internationalization

The NFSv4 protocol does not require a separate protocol to provide
for the initial mappi ng between pathnane and fil ehandle. |nstead of
usi ng the ol der MOUNT protocol for this mapping, the server provides
a root filehandl e that represents the logical root or top of the file
systemtree provided by the server. The server provides nmultiple
file systenms by gluing themtogether with pseudo-file systems. These
pseudo-file systems provide for potential gaps in the pathnanes
between real file systens.

Haynes & Noveck St andards Track [Page 10]

RFC 7530 NFSv4 March 2015

1.4.3.1. Filehandle Types

In previous versions of the NFS protocol, the fil ehandl e provi ded by
the server was guaranteed to be valid or persistent for the lifetine
of the file systemobject to which it referred. For sonme server

i npl enentations, this persistence requirenent has been difficult to
meet. For the NFSv4 protocol, this requirenent has been rel axed by
i ntroduci ng another type of filehandle -- volatile. Wth persistent
and volatile filehandl e types, the server inplenentation can match
the abilities of the file systemat the server along with the
operating environnent. The client will have know edge of the type of
filehandl e bei ng provided by the server and can be prepared to dea
with the semantics of each.

1.4.3.2. Attribute Types

The NFSv4 protocol has a rich and extensible file object attribute
structure, which is divided i nto REQU RED, RECOMVENDED, and naned
attributes (see Section 5).

Several (but not all) of the REQU RED attributes are derived fromthe
attributes of NFSv3 (see the definition of the fattr3 data type in

[RFC1813]). An exanple of a REQU RED attribute is the file object’s
type (Section 5.8.1.2) so that regular files can be distinguished
fromdirectories (also known as folders in sone operating

envi ronnents) and ot her types of objects. REQU RED attributes are

di scussed in Section 5. 1.

An exanpl e of the RECOVMENDED attributes is an acl (Section 6.2.1).
This attribute defines an Access Control List (ACL) on a file object.
An ACL provides file access control beyond the nodel used in NFSv3.
The ACL definition allows for specification of specific sets of

perm ssions for individual users and groups. |In addition, ACL

i nheritance all ows propagation of access pernissions and restriction
down a directory tree as file system objects are created.
RECOMVENDED attri butes are discussed in Section 5. 2.

A named attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Naned attributes
are neant to be used by client applications as a nethod to associate
application-specific data with a regular file or directory. NFSv4. 1
nodi fies naned attributes relative to NFSv4.0 by tightening the

al | owed operations in order to prevent the devel opnent of
non-interoperabl e inplenentati ons. Naned attributes are discussed in
Section 5. 3.

Haynes & Noveck St andards Track [Page 11]

RFC 7530 NFSv4 March 2015

1.4.3.3. Milti-Server Nanespace

A singl e-server nanespace is the file system hierarchy that the
server presents for renote access. It is a proper subset of all the
file systens avail able locally. NFSv4 contains a nunber of features
to allow inplenentati on of nanespaces that cross server boundaries
and that allow and facilitate a non-disruptive transfer of support
for individual file systens between servers. They are all based upon
attributes that allow one file systemto specify alternative or new
|l ocations for that file system That is, just as a client mght
traverse across local file systens on a single server, it can now
traverse to a renote file systemon a different server

These attributes may be used together with the concept of absent file
systens, which provide specifications for additional |ocations but no
actual file systemcontent. This allows a nunber of inportant
facilities:

0 Location attributes may be used with absent file systens to
i mpl enent referrals whereby one server may direct the client to a
file system provi ded by another server. This allows extensive
mul ti-server nanespaces to be constructed.

0 Location attributes may be provided for present file systens to
provide the locations of alternative file systeminstances or
replicas to be used in the event that the current file system
i nstance becones unavail abl e.

0 Location attributes may be provided when a previously present file
system becones absent. This allows non-disruptive nigration of
file systens to alternative servers

1.4.4. OPEN and CLOSE

The NFSv4 protocol introduces OPEN and CLOSE operations. The OPEN
operation provides a single point where file | ookup, creation, and
share semantics (see Section 9.9) can be conbined. The CLOSE
operation al so provides for the release of state accunul ated by OPEN

1.4.5. File Locking

Wth the NFSv4 protocol, the support for byte-range file locking is
part of the NFS protocol. The file locking support is structured so
that an RPC cal | back nmechanismis not required. This is a departure
fromthe previous versions of the NFS file | ocking protocol, Network
Lock Manager (NLM [RFC1813]. The state associated with file |ocks
is maintained at the server under a | ease-based nodel. The server
defines a single |ease period for all state held by an NFS client.

Haynes & Noveck St andards Track [Page 12]

RFC 7530 NFSv4 March 2015

If the client does not renewits |lease within the defined period, al
state associated with the client’s | ease may be rel eased by the
server. The client may renew its | ease by use of the RENEW operation
or inplicitly by use of other operations (primarily READ).

1.4.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFSv4 protocol is
simlar to previous versions. Attributes and directory information
are cached for a duration determned by the client. At the end of a
predefined timeout, the client will query the server to see if the
related file system object has been updat ed.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to deternmine if the file has
been changed. Based on this information, the client determines if
the data cache for the file should be kept or released. Al so, when
the file is closed, any nodified data is witten to the server

If an application wants to serialize access to file data, file
I ocking of the file data ranges in question should be used.

The major addition to NFSv4 in the area of caching is the ability of
the server to delegate certain responsibilities to the client. Wen
the server grants a delegation for a file to a client, the client is
guaranteed certain semantics with respect to the sharing of that file
with other clients. At OPEN, the server may provide the client
either a read (OPEN_DELEGATE READ) or a wite (OPEN _DELEGATE WRI TE)
del egation for the file (see Section 10.4). |If the client is granted
an OPEN DELEGATE READ del egation, it is assured that no other client
has the ability to wite to the file for the duration of the

del egation. |If the client is granted an OPEN _DELEGATE_WRI TE

del egation, the client is assured that no other client has read or
wite access to the file.

Del egations can be recalled by the server. |[|f another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a call back path
exi st between the server and client. |If this callback path does not
exi st, then del egati ons cannot be granted. The essence of a

del egation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, or WRITE without inmediate
interaction with the server

Haynes & Noveck St andards Track [Page 13]

RFC 7530 NFSv4 March 2015

1.5. Ceneral Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader.

Absent File System A file systemis "absent" when a nanespace
conponent does not have a backing file system

Anonyrmous Stateid: The Anonynous Stateid is a special |ocking object
and is defined in Section 9.1.4.3.

Byte: In this docunment, a byte is an octet, i.e., a datumexactly
8 bits in |l ength.

Cient: The client is the entity that accesses the NFS server’s
resources. The client may be an application that contains the
logic to access the NFS server directly. The client nmay al so be
the traditional operating systemclient that provides renote file
system services for a set of applications.

Wth reference to byte-range |locking, the client is also the
entity that maintains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or failure
recovery for those |locks it nanages.

Note that nultiple clients may share the sane transport and
connection, and multiple clients may exi st on the sanme network

node.

Cient ID The client IDis a 64-bit quantity used as a unique,
shorthand reference to a client-supplied verifier and ID. The
server is responsible for supplying the client ID

File System The file systemis the collection of objects on a

server that share the sanme fsid attribute (see Section 5.8.1.9).

Lease: A lease is an interval of tine defined by the server for
which the client is irrevocably granted a lock. At the end of a
| ease period the lock may be revoked if the | ease has not been
extended. The I ock nust be revoked if a conflicting |ock has been
granted after the |ease interval

Al'l | eases granted by a server have the sane fixed duration. Note
that the fixed interval duration was chosen to alleviate the
expense a server would have in maintaining state about variabl e-

I ength | eases across server failures.

Haynes & Noveck St andards Track [Page 14]

RFC 7530 NFSv4 March 2015

Lock: The term"lock" is used to refer to record (byte-range) | ocks
as well as share reservations unless specifically stated
ot herw se.

Lock-Omer: Each byte-range lock is associated with a specific
| ock-owner and an open-owner. The | ock-owner consists of a
client 1D and an opaque owner string. The client presents this to
the server to establish the ownership of the byte-range | ock as
needed.

Open-Owner: Each open file is associated with a specific open-owner
which consists of a client 1D and an opaque owner string. The
client presents this to the server to establish the ownership of
t he open as needed.

READ Bypass Stateid: The READ Bypass Stateid is a special |ocking
object and is defined in Section 9.1.4.3.

Server: The "server" is the entity responsible for coordinating
client access to a set of file systens.

Stable Storage: NFSv4 servers mnmust be able to recover w thout data
loss fromnultiple power failures (including cascadi ng power
failures, that is, several power failures in quick succession),
operating systemfailures, and hardware failure of conponents
other than the storage nmediumitself (for exanple, disk
non-vol atil e RAM.

Some exanpl es of stable storage that are allowable for an NFS
server include:

(1) Media commit of data. That is, the nodified data has been
successfully witten to the disk media -- for exanple, the
di sk platter.

(2) An imediate reply disk drive with battery-backed on-drive
i nternmedi ate storage or uninterruptible power system (UPS)

(3) Server commit of data with battery-backed internediate
storage and recovery software.

(4) Cache commit with UPS and recovery software.

Haynes & Noveck St andards Track [Page 15]

RFC 7530 NFSv4 March 2015

1

1

6.

7.

Stateid: A stateid is a 128-bit quantity returned by a server that
uni quely identifies the open and | ocking states provided by the
server for a specific open-owner or |ock-owner/open-owner pair for
a specific file and type of I ock.

Verifier: A wverifier is a 64-bit quantity generated by the client
that the server can use to deternmine if the client has restarted
and lost all previous |ock state.

Changes since RFC 3530

The mai n changes from RFC 3530 [RFC3530] are:

0 The XDR definition has been noved to a conpani on docunent
[RFC7531] .

o The IETF intellectual property statenments were updated to the
| at est version.

0 There is a restructured and nore conpl ete explanation of mnulti-
server nanespace features

o The handling of domain names was updated to reflect
Internationalized Domain Nanes in Applications (IDNA) [RFC5891].

0 The previously required LI PKEY and SPKM 3 security mechani snms have
been renoved.

o Some clarification was provided regarding a client re-establishing
cal | back information to the new server if state has been m grated

0o Athird edge case was added for courtesy |ocks and network
partitions.

o The definition of stateid was strengthened.
Changes between RFC 3010 and RFC 3530

The definition of the NFSv4 protocol in [RFC3530] replaced and

obsol eted the definition present in [RFC3010]. While portions of the
two docunents renmai ned the sane, there were substantive changes in
others. The changes nade between [RFC3010] and [RFC3530] reflect

i mpl enent ati on experience and further review of the protocol

Haynes & Noveck St andards Track [Page 16]

RFC 7530 NFSv4 March 2015

The following list is not inclusive of all changes but presents sone
of the nobst notabl e changes or additions nade:

0 The state nodel has added an open_owner4 identifier. This was
done to acconmodat e PCSI X-based clients and the nodel they use for
file locking. For PCSIX clients, an open_owner4 woul d correspond
to a file descriptor potentially shared anongst a set of processes
and the |l ock _owner4 identifier would correspond to a process that
is locking a file.

0 Added clarifications and error conditions for the handling of the
owner and group attributes. Since these attributes are string
based (as opposed to the nuneric uid/gid of previous versions of
NFS), translations may not be avail abl e and hence t he changes
made.

0o Added clarifications for the ACL and node attri butes to address
eval uation and partial support.

o For identifiers that are defined as XDR opaque, set limits on
their size.

0 Added the nmounted on fileid attribute to allow POSI X clients to
correctly construct |ocal nounts.

0 Mdified the SETCLI ENTI DY SETCLI ENTI D_CONFI RM oper ations to dea
correctly with confirmation details along with adding the ability
to specify new client callback information. Al so added
clarification of the callback information itself.

0 Added a new operati on RELEASE LOCKOMNNER to enabl e notifying the
server that a |ock_owner4 will no |onger be used by the client.

0 Added RENEW operation changes to identify the client correctly and
allow for additional error returns.

o Verified error return possibilities for all operations.
0 Renoved use of the pathnane4 data type from LOOKUP and OPEN in

favor of having the client construct a sequence of LOOKUP
operations to achieve the sane effect.

Haynes & Noveck St andards Track [Page 17]

RFC 7530 NFSv4 March 2015

2.

2.

1

Prot ocol Data Types

The syntax and semantics to describe the data types of the NFSv4
protocol are defined in the XDR [RFC4506] and RPC [RFC5531]

docunents. The next sections build upon the XDR data types to define
types and structures specific to this protocol. As a reninder, the
size constants and authoritative definitions can be found in

[RFC7531] .

Basi ¢ Data Types

Table 1 lists the base NFSv4 data types.

Descri bes LOCK | engt hs.

e o e e e e e e e meeeaaaan +
| Data Type | Definition

o e e e e e o g +
| int32_t | typedef int int32_t; |
I uint32_t I typedef unsigned int uint32_t; I
I int64_t I typedef hyper int64_t; I
I ui nt 64_t I typedef unsi gned hyper uint64_t; I
I attrlist4 I typedef opaque attrli st4<>; I
I I Used for file/directory attributes. I
I bi t map4 I typedef uint32_t bitmapd<>; I
I I Used in attribute array encodi ng. I
I changei d4 I typedef uint64_t changei d4;

I I Used in the definition of change_info4. I
I clientid4 I typedef uint64_t clientid4; I
I I Shorthand reference to client identification.

I count 4 I typedef uint32_t count4; I
I I Various count paraneters (READ, WRITE, COWM T).

I | engt h4 I typedef uint64_t |ength4; I
| | |
| | |

Haynes & Noveck St andards Track [Page 18]

RFC 7530 NFSv4 March 2015

node4 typedef uint32_t node4;
Mode attribute data type
nfs_cooki e4 typedef uint64_t nfs_cookie4;

Opaque cooki e val ue for READDI R

nfs_fh4 typedef opaque nfs_fh4<NFS4_FHSI ZE>
Fi | ehandl e definition

nfs ftype4d enum nfs_ftype4,;
Various defined file types.

nf sstat 4 enum nf sst at 4;

Return val ue for operations.
nfs_| ease4d typedef uint32_t nfs_| ease4;

Duration of a |ease in seconds.

of fset4 typedef uint64_t offsetd4;
Various offset designations (READ, WRI TE, LOCK
COW T) .

qop4 typedef uint32_t qop4;
Quality of protection designation in SECI NFO

sec_oi d4 t ypedef opaque sec_oi d4<>
Security Object ldentifier. The sec_oid4 data
type is not really opaque. Instead, it
contains an ASN. 1 OBJECT | DENTI FI ER as used by
GSS- APl in the mech_type argunment to
GSS Init_sec_context. See [RFC2743] for
details.

seqi d4 typedef uint32_t seqi d4;

Sequence identifier used for file |ocking.

Haynes & Noveck St andards Track [Page 19]

RFC 7530

utf8string
utf8str_cis
utf8str_cs

ut f 8str_nmi xed

conponent 4

asci i _REQUI RED4

pat hnane4

nfs | ocki d4

verifier4d

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| linktext4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Haynes & Noveck

NFSv4 Mar ch

t ypedef opaque utf8string<>;
UTF- 8 encodi ng for strings.
typedef utf8string utf8str_cis;
Case-insensitive UTF-8 string.
typedef utf8string utf8str_cs;
Case-sensitive UTF-8 string

typedef utf8string utf8str_ni xed;

UTF-8 strings with a case-sensitive prefix and

a case-insensitive suffix.

typedef utf8str_cs conponent4;

Repr esents pat hnane conponents.

typedef opaque |i nktext4<>;

Synbolic link contents ("synbolic link" is
defined in an Open G oup [openg _symnl i nk]
st andar d) .

typedef utf8string ascii_REQU RED4;

String is sent as ASCII and thus is
autonatical ly UTF-8.

typedef conponent4 pat hnanme4<>;

Represents pat hnane for fs_|locations.

typedef uint64_t nfs_| ockid4;

t ypedef opaque verifier4[NFS4_VERI Fl ER S| ZF] ;
Verifier used for various operations (COW T,

CREATE, OPEN, READDIR, WRI TE)
NFS4 VERI FI ER_SI ZE i s defined as 8.

Tabl e 1: Base NFSv4 Data Types

2015

St andards Track [Page 20]

RFC 7530 NFSv4 March 2015

2.2. Structured Data Types
2.2.1. nfstined

struct nfstinme4d {
int64_t seconds;
uint32_t nseconds;

s

The nfstinme4 structure gives the nunber of seconds and nanoseconds
since mdnight or 0 hour January 1, 1970 Coordinated Universal Tinme
(UTC). Values greater than zero for the seconds field denote dates
after the 0 hour January 1, 1970. Values less than zero for the
seconds field denote dates before the O hour January 1, 1970. In
both cases, the nseconds field is to be added to the seconds field
for the final tine representation. For exanple, if the tine to be
represented is one-half second before 0 hour January 1, 1970, the
seconds field would have a val ue of negative one (-1) and the
nseconds fields would have a val ue of one-half second (500000000).
Val ues greater than 999, 999,999 for nseconds are considered invalid.

This data type is used to pass tinme and date information. A server
converts to and fromits local representation of tine when processing
time val ues, preserving as nuch accuracy as possible. |If the
precision of tinestanps stored for a file systemobject is |ess than
defined, |loss of precision can occur. An adjunct tinme maintenance
protocol is recommended to reduce client and server tine skew

2.2.2. tinme_how
enumtime_howd {

SET_TO_SERVER TI ME4
SET_TO_CLI ENT_TI ME4

s
2.2.3. settined

union settinme4 switch (tine_how4 set it) {
case SET_TO CLI ENT_TI ME4
nfsti ne4 tinme;
defaul t:
voi d;
s

The above definitions are used as the attribute definitions to set
time values. If set it is SET _TO SERVER Tl ME4, then the server uses
its local representation of tine for the tine val ue.

Haynes & Noveck St andards Track [Page 21]

RFC 7530 NFSv4 March 2015

2.2.4. specdata4d
struct specdatad {

uint32_t specdatal; /* major device nunber */
uint32_t specdata2; /* mnor device nunber */

b

This data type represents additional information for the device file
types NF4ACHR and NF4BLK

2.2.5. fsid4d

struct fsid4 {

ui nt 64 _t nmaj or ;

ui nt 64_t m nor ;
b
This type is the file systemidentifier that is used as a REQU RED
attribute.

2.2.6. fs_locationd

struct fs_locationd {
utf8str _cis server <>;
pat hnane4 r oot pat h;

i
2.2.7. fs_ locations4

struct fs_|locations4d {
pat hnane4 fs root;
fs location4d | ocati ons<>;

b

The fs_locationd4 and fs_| ocations4 data types are used for the
fs | ocations RECOMVENDED attri bute, which is used for migration and
replication support.

2.2.8. fattr4

struct fattr4 {
bi t rap4 attrmask
attrlist4 attr_vals;

s

The fattr4 structure is used to represent file and directory
attributes

Haynes & Noveck St andards Track [Page 22]

RFC 7530 NFSv4 March 2015

The bitmap is a counted array of 32-bit integers used to contain bit
val ues. The position of the integer in the array that contains bit n
can be conputed fromthe expression (n/ 32), and its bit within that
integer is (n nod 32).

2.2.9. change_info4

struct change_info4 {

bool atoni c;
changei d4 bef or e;
changei d4 after;

H

This structure is used with the CREATE, LINK, REMOVE, and RENAVE
operations to let the client know the value of the change attribute
for the directory in which the target file system object resides.

2.2.10. clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */

H

The clientaddr4 structure is used as part of the SETCLIENTID
operation, either (1) to specify the address of the client that is
using a client IDor (2) as part of the callback registration. The
r_netid and r_addr fields respectively contain a network id and

uni versal address. The network id and universal address concepts,
together with formats for TCP over |1Pv4 and TCP over |Pv6, are
defined in [RFC5665], specifically Tables 2 and 3 and

Sections 5.2.3.3 and 5.2.3.4.

2.2.11. <cb client4
struct cb _client4d {

unsi gned i nt cb_program
clientaddr4 cb_l ocation

b

This structure is used by the client to informthe server of its
cal | back address; it includes the program nunber and client address.

Haynes & Noveck St andards Track [Page 23]

RFC 7530 NFSv4 March 2015

2.2.12. nfs_client_id4

struct nfs_client _id4 {
verifier4d verifier;
opaque i d<NFS4_OPAQUE LI M T>
s
This structure is part of the argunents to the SETCLI ENTI D operati on.
2.2.13. open_owner4

struct open_owner4 {

clientid4 clientid;

opaque owner <NFS4_OPAQUE LI M T>
s

This structure is used to identify the owner of open state.
2.2.14. | ock_owner4
struct | ock_owner4 {
clientid4 clientid;
opaque owner <NFS4_OPAQUE LI M T>
s
This structure is used to identify the owner of file |ocking state.

2.2.15. open_to_|l ock_owner4

struct open_to_ | ock owner4 {

seqi d4 open_seqi d;

statei d4 open_statei d;

seqi d4 | ock_seqi d;

| ock_owner 4 | ock_owner;
H
This structure is used for the first LOCK operation done for an
open_owner4. It provides both the open_stateid and | ock_owner such

that the transition is made froma valid open_statei d sequence to
that of the new | ock_stateid sequence. Using this mechani sm avoids
the confirmation of the | ock _owner/lock seqid pair since it is tied
to established state in the formof the open_stateid/ open_seqid.

Haynes & Noveck St andards Track [Page 24]

RFC 7530 NFSv4 March 2015

2.2.16. stateid4

struct stateid4 {

ui nt 32_t seqi d;

opaque ot her [NFS4_OTHER_SI ZE] ;
i

This structure is used for the various state-sharing nechani sns
between the client and server. For the client, this data structure
is read-only. The server is required to increnent the seqid field
nmonot oni cally at each transition of the stateid. This is inportant
since the client will inspect the seqid in OPEN stateids to deternne
the order of OPEN processing done by the server

3. RPC and Security Flavor

The NFSv4 protocol is an RPC application that uses RPC version 2 and
the XDR as defined in [RFC5531] and [RFC4506]. The RPCSEC GSS
security flavors as defined in version 1 ([RFC2203]) and version 2
([RFC5403]) MUST be inplenmented as the nechanismto deliver stronger
security for the NFSv4 protocol. However, deploynent of RPCSEC GSS
i s optional

3.1. Ports and Transports

Historically, NFSv2 and NFSv3 servers have resided on port 2049. The
regi stered port 2049 [RFC3232] for the NFS protocol SHOULD be the
default configuration. Using the registered port for NFS services
means the NFS client will not need to use the RPC bi nding protocols
as described in [RFC1833]; this will allow NFS to transit firewalls

Where an NFSv4 inplenmentation supports operation over the | P network
protocol, the supported transport |ayer between NFS and | P MJST be an
| ETF standardi zed transport protocol that is specified to avoid

net wor k congestion; such transports include TCP and the Stream
Control Transmi ssion Protocol (SCTP). To enhance the possibilities
for interoperability, an NFSv4 inplenentati on MJST support operation
over the TCP transport protocol

If TCP is used as the transport, the client and server SHOULD use
persi stent connections. This will prevent the weakening of TCP' s
congestion control via short-lived connections and will inprove
performance for the Wde Area Network (WAN) environment by
elinmnating the need for SYN handshakes.

As noted in Section 19, the authentication nodel for NFSv4 has noved

from machi ne- based to principal -based. However, this nodification of
the aut hentication nodel does not inply a technical requirenent to

Haynes & Noveck St andards Track [Page 25]

RFC 7530 NFSv4 March 2015

nove the TCP connection nmanagenent nodel from whol e nmachi ne-based to
one based on a per-user nodel. |In particular, NFS over TCP client

i mpl ement ati ons have traditionally nultiplexed traffic for nultiple
users over a conmon TCP connection between an NFS client and server.
This has been true, regardl ess of whether the NFS client is using
AUTH _SYS, AUTH DH, RPCSEC GSS, or any other flavor. Simlarly, NFS
over TCP server inplenentations have assunmed such a nodel and thus
scale the inplenentati on of TCP connection management in proportion
to the nunber of expected client machines. It is intended that NFSv4
will not nodify this connection managenent nodel. NFSv4 clients that
violate this assunption can expect scaling issues on the server and
hence reduced servi ce.

3.1.1. dient Retransm ssi on Behavi or

When processing an NFSv4 request received over a reliable transport
such as TCP, the NFSv4 server MJST NOT silently drop the request,
except if the established transport connection has been broken

G ven such a contract between NFSv4 clients and servers, clients MJST
NOT retry a request unless one or both of the follow ng are true:

o The transport connection has been broken
0 The procedure being retried is the NULL procedure

Since reliable transports, such as TCP, do not always synchronously

i nform a peer when the other peer has broken the connection (for
exanpl e, when an NFS server reboots), the NFSv4 client may want to
actively "probe" the connection to see if has been broken. Use of
the NULL procedure is one reconmmended way to do so. So, when a
client experiences a renote procedure call tineout (of sone arbitrary
i mpl enent ati on-specific anount), rather than retrying the renote
procedure call, it could instead issue a NULL procedure call to the
server. |If the server has died, the transport connection break wll
eventually be indicated to the NFSv4 client. The client can then
reconnect, and then retry the original request. If the NULL
procedure call gets a response, the connection has not broken. The
client can decide to wait longer for the original request’s response,
or it can break the transport connection and reconnect before
re-sendi ng the original request.

For call backs fromthe server to the client, the sane rules apply,

but the server doing the call back becones the client, and the client
receiving the call back becones the server

Haynes & Noveck St andards Track [Page 26]

RFC 7530 NFSv4 March 2015

3.2. Security Flavors

Tradi tional RPC i npl enentations have included AUTH NONE, AUTH_SYS
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203], an
additional security flavor of RPCSEC GSS has been introduced, which
uses the functionality of GSS-API [RFC2743]. This allows for the use
of various security nmechanisns by the RPC | ayer without the

addi tional inplementation overhead of adding RPC security flavors.

For NFSv4, the RPCSEC GSS security flavor MJST be used to enable the
mandat ory-to-i npl ement security mechanism Oher flavors, such as
AUTH _NONE, AUTH SYS, and AUTH DH, NAY be inplenmented as well.

3.2.1. Security Mechanisns for NFSv4

RPCSEC GSS, via GSS-APlI, supports nultiple mechanisms that provide
security services. For interoperability, NFSv4 clients and servers
MUST support the Kerberos V5 security mechani sm

The use of RPCSEC GSS requires sel ection of nmechanism quality of
protection (QOP), and service (authentication, integrity, privacy).
For the nandated security nechani sns, NFSv4 specifies that a QOP of
zero is used, leaving it up to the nechanismor the mechanisnis
configuration to map QOP zero to an appropriate |evel of protection
Each nmandat ed nechani sm specifies a m ni nrum set of cryptographic
algorithns for inplenenting integrity and privacy. NFSv4 clients and
servers MJST be inplenented on operating environnents that conply
with the required cryptographic algorithns of each required
mechani sm

3.2.1.1. Kerberos V5 as a Security Triple
The Kerberos V5 GSS- APl nechani smas described in [RFC4121] MJIST be

i mpl enented with the RPCSEC GSS services as specified in Table 2.
Both client and server MJST support each of the pseudo-fl avors.

| 390003 | krb5 | 1.2.840.113554.1.2.2 | rpc_gss_svc_none
| 390004 | krb5i | 1.2.840.113554.1.2.2 | rpc_gss_svc_integrity
| 390005 | krb5p | 1.2.840.113554.1.2.2 | rpc_gss_svc_privacy

Tabl e 2: Mappi ng Pseudo- Fl avor to Service
Note that the pseudo-flavor is presented here as a mapping aid to the

i npl ementer. Because this NFS protocol includes a nethod to
negotiate security and it understands the GSS-API nechanism the

Haynes & Noveck St andards Track [Page 27]

RFC 7530 NFSv4 March 2015

pseudo-flavor is not needed. The pseudo-flavor is needed for NFSv3
since the security negotiation is done via the MOUNT protocol as
described in [RFC2623].

At the time this docunent was specified, the Advanced Encryption
Standard (AES) with HVAC-SHAL was a required algorithmset for
Kerberos V5. In contrast, when NFSv4.0 was first specified in

[RFC3530], weaker algorithm sets were REQU RED for Kerberos V5, and
were REQUI RED in the NFSv4.0 specification, because the Kerberos V5
specification at the time did not specify stronger algorithns. The
NFSv4 specification does not specify required algorithns for Kerberos
V5, and instead, the inplenenter is expected to track the evol ution
of the Kerberos V5 standard if and when stronger algorithns are
speci fi ed.

3.2.1.1.1. Security Considerations for Cryptographic Al gorithms in
Ker beros V5

When depl oyi ng NFSv4, the strength of the security achi eved depends
on the existing Kerberos V5 infrastructure. The algorithns of
Kerberos V5 are not directly exposed to or selectable by the client
or server, so there is sone due diligence required by the user of
NFSv4 to ensure that security is acceptable where needed. Cuidance
is provided in [RFC6649] as to why weak al gorithms shoul d be disabled
by default.

3.3. Security Negotiation

Wth the NFSv4 server potentially offering nultiple security

mechani sns, the client needs a nethod to determ ne or negotiate which
mechanismis to be used for its comunication with the server. The
NFS server can have nultiple points within its file system namespace
that are available for use by NFS clients. In turn, the NFS server
can be configured such that each of these entry points can have
different or nmultiple security mechani snms in use.

The security negotiation between client and server SHOULD be done
with a secure channel to elimnate the possibility of a third party
intercepting the negotiati on sequence and forcing the client and
server to choose a | ower level of security than required or desired
See Section 19 for further discussion

Haynes & Noveck St andards Track [Page 28]

RFC 7530 NFSv4 March 2015

3. 3.

3. 3.

1. SECINFO

The SECI NFO operation will allow the client to determine, on a
per-fil ehandl e basis, what security triple (see [RFC2743] and

Section 16.31.4) is to be used for server access. In general, the
client will not have to use the SECI NFO operation, except during
initial comunication with the server or when the client encounters a
new security policy as the client navigates the nanmespace. Either
condition will force the client to negotiate a new security triple.

2. Security Error

Based on the assunption that each NFSv4 client and server MJST
support a mininumset of security (i.e., Kerberos V5 under

RPCSEC GSS), the NFS client will start its conmunication with the
server with one of the mniml security triples. During

communi cation with the server, the client can receive an NFS error of
NFSAERR WRONGSEC. This error allows the server to notify the client
that the security triple currently being used is not appropriate for
access to the server’'s file systemresources. The client is then
responsi bl e for deternining what security triples are avail able at
the server and choosing one that is appropriate for the client. See
Section 16.31 for further discussion of howthe client will respond
to the NFS4ERR WRONGSEC error and use SECI NFO

3.3.3. Callback RPC Authentication

Except as noted el sewhere in this section, the callback RPC
(described later) MJST nutually authenticate the NFS server to the
principal that acquired the client ID (al so described |ater), using
the security flavor of the original SETCLIENTID operation used.

For AUTH_NONE, there are no principals, so this is a non-issue
AUTH_SYS has no notions of nutual authentication or a server
principal, so the callback fromthe server sinply uses the AUTH SYS
credential that the user used when he set up the del egation

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal

uni x. host @omai n
where host and donmin are variables corresponding to the name of the

server host and directory services domain in which it lives, such as
a Network Information System domain or a DNS domai n.

Haynes & Noveck St andards Track [Page 29]

RFC 7530 NFSv4 March 2015

Regar dl ess of what security mechani sm under RPCSEC GSS is being used,
the NFS server MJST identify itself in GSS-API via a

GSS_C NT_HOSTBASED SERVI CE nane type. GSS_C NT_HOSTBASED SERVI CE
nanmes are of the form

servi ce@ost nane
For NFS, the "service" elenment is:
nfs

| mpl enent ati ons of security nmechanisns will convert nfs@ostnane to
various different forns. For Kerberos V5, the following formis
RECOVMENDED

nf s/ host nane

For Kerberos V5, nfs/hostname would be a server principal in the
Kerberos Key Distribution Center database. This is the same
principal the client acquired a GSS-API context for when it issued
t he SETCLI ENTI D operation; therefore, the real mnane for the server
principal nust be the sanme for the callback as it was for the
SETCLI ENTI D

4. Fil ehandl es

The filehandle in the NFS protocol is a per-server unique identifier
for a file systemobject. The contents of the filehandl e are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the file system

obj ect.

4.1. Obtaining the First Filehandle

The operations of the NFS protocol are defined in terns of one or
nore filehandles. Therefore, the client needs a filehandle to
initiate communication with the server. Wth the NFSv2 protoco

[RFC1094] and the NFSv3 protocol [RFC1813], there exists an ancillary
protocol to obtain this first filehandle. The MOUNT protocol, RPC
program nunber 100005, provides the nechanismof translating a
string-based file system pathname to a filehandl e that can then be
used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public

filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandle in conbination with the LOOKUP operation in

Haynes & Noveck St andards Track [Page 30]

RFC 7530 NFSv4 March 2015

the NFSv2 and NFSv3 protocols, it has been denobnstrated that the
MOUNT protocol is unnecessary for viable interaction between the NFS
client and server.

Therefore, the NFSv4 protocol will not use an ancillary protocol for
translation fromstring-based pathnanes to a filehandle. Two speci al
filehandles will be used as starting points for the NFS client.

4.1.1. Root Filehandle

The first of the special filehandles is the root filehandle. The
root filehandle is the "conceptual"” root of the file system nanespace
at the NFS server. The client uses or starts with the root
filehandl e by enpl oyi ng the PUTROOTFH operati on. The PUTROOTFH
operation instructs the server to set the current filehandle to the
root of the server’'s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’s file
tree with the LOOKUP operation. A conplete discussion of the server
nanespace is in Section 7.

4.1.2. Public Fil ehandl e

The second special filehandle is the public filehandle. Unlike the
root filehandle, the public filehandle nmay be bound or represent an
arbitrary file systemobject at the server. The server is
responsible for this binding. It may be that the public filehandle
and the root filehandle refer to the sane file system object.

However, it is up to the admnistrative software at the server and
the policies of the server admnistrator to define the binding of the
public filehandl e and server file systemobject. The client may not
make any assunptions about this binding. The client uses the public
filehandl e via the PUTPUBFH operati on.

4.2. Filehandl e Types

In the NFSv2 and NFSv3 protocols, there was one type of filehandle
with a single set of semantics, of which the primary one was that it
was persistent across a server reboot. As such, this type of
filehandle is terned "persistent” in NFSv4. The semantics of a
persistent filehandle remain the sane as before. A new type of
filehandl e introduced in NFSv4 is the volatile filehandl e, which
attenpts to acconmpdate certain server environnents.

The volatile filehandl e type was introduced to address server
functionality or inplementation issues that nake correct

i npl enmentation of a persistent filehandle infeasible. Sone server
environnments do not provide a file systemlevel invariant that can be
used to construct a persistent filehandle. The underlying server

Haynes & Noveck St andards Track [Page 31]

RFC 7530 NFSv4 March 2015

file systemmay not provide the invariant, or the server’'s file
system progranm ng i nterfaces nmay not provide access to the needed
invariant. Volatile filehandl es may ease the inplenmentation of
server functionality, such as hierarchical storage managenent or file
system reorgani zation or migration. However, the volatile filehandle
i ncreases the inplenentation burden for the client.

Since the client will need to handle persistent and volatile
filehandl es differently, a file attribute is defined that nay be used
by the client to determine the fil ehandl e types being returned by the
server.

4.2.1. Ceneral Properties of a Filehandle

The filehandl e contains all the information the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a |later request and
can conpare two filehandles fromthe sane server for equality by
doi ng a byte-by-byte conparison. However, the client MJST NOT
otherwi se interpret the contents of filehandles. |If two filehandles
fromthe sane server are equal, they MIST refer to the sanme file
However, it is not required that two different filehandles refer to
different file systemobjects. Servers SHOULD try to maintain a
one-t o-one correspondence between fil ehandl es and file system objects
but there nay be situations in which the napping is not one-to-one.
Cients MIJST use fil ehandl e conparisons only to inprove performance,
not for correct behavior. Al clients need to be prepared for
situations in which it cannot be determ ned whether two different
filehandl es denote the same object and in such cases need to avoid
assunming that objects denoted are different, as this m ght cause

i ncorrect behavior. Further discussion of filehandle and attribute
conparison in the context of data caching is presented in

Section 10. 3. 4.

As an exanple, in the case that two different pathnanmes when
traversed at the server terninate at the sane file system object, the
server SHOULD return the sane filehandle for each path. This can
occur if a hard link is used to create two filenames that refer to
the sane underlying file object and associated data. For exanple, if
paths /a/b/c and /a/d/c refer to the same file, the server SHOULD
return the sanme filehandl e for both pathname traversals.

4.2.2. Persistent Filehandle
A persistent filehandle is defined as having a fixed value for the
lifetime of the file systemobject to which it refers. Once the

server creates the filehandle for a file system object, the server
MUST accept the sane filehandle for the object for the lifetine of

Haynes & Noveck St andards Track [Page 32]

RFC 7530 NFSv4 March 2015

the object. |If the server restarts or reboots, the NFS server nust
honor the sane filehandle value as it did in the server’s previous
instantiation. Sinilarly, if the file systemis mgrated, the new
NFS server nust honor the sane filehandle as the old NFS server.

The persistent filehandle will becone stale or invalid when the file
system object is renoved. Wien the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFS4AERR STALE. A filehandle may becone stal e when the
file systemcontaining the object is no |onger available. The file
system may become unavailable if it exists on renovabl e nedia and the
media is no longer available at the server, or if the file systemin
whol e has been destroyed, or if the file systemhas sinply been
removed fromthe server’s namespace (i.e., unnmounted in a UNI X

envi ronment).

4.2.3. Volatile Filehandle

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server may determ ne
that a volatile filehandle is no longer valid at nany different
points in tine. |If the server can definitively determne that a
volatile filehandle refers to an object that has been renpved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). 1In all other cases where the server
determines that a volatile filehandl e can no | onger be used, it
shoul d return an error of NFS4ERR_FHEXPI RED

The REQUIRED attribute "fh_expire_type" is used by the client to
determ ne what type of filehandle the server is providing for a
particular file system This attribute is a bitmask with the
foll owi ng val ues:

FH4 PERSI STENT: The val ue of FH4_PERSI STENT is used to indicate a
persistent filehandle, which is valid until the object is renoved
fromthe file system The server will not return
NFSAERR FHEXPI RED for this filehandle. FH4_PERSI STENT is defined
as a value in which none of the bits specified below